1-го курса специальности 09.02.03. Программирование в компьютерных системах
Группа 106
Руководитель проекта:
Преподаватель физики
Пономарева А. И. ___________
Проект защищен с оценкой:__________
«_____»_________________20___г.
Минеральные Воды, 20г.
Оглавление
Введение
Основная часть
1. История создания электродвигателей
2. Устройство и принцип работы электродвигателя
3. Характеристики электродвигателя
4. Виды электродвигателей
5. Достоинства и недостатки электродвигателя
6. Применение электродвигателей
Заключение
Использованные источники
Введение
Электрический двигатель - это электрическая машина (электромеханический преобразователь), в которой электрическая энергия преобразуется в механическую, побочным эффектом является выделение тепла. В 21-ом веке электродвигатели имеют особое место в нашей жизни. Оглянитесь вокруг – они получил практически повсеместное распространение. Сегодня они используются не только во всех отраслях промышленности, но и в транспорте, предметах и устройствах, окружающих нас в повседневной жизни, на работе, в школе и дома. Фены, вентиляторы, швейные машины, строительные инструменты, компьютеры – вот далеко не полный перечень устройств, где используются электродвигатели. Актуальность использования электродвигателя очень высока. Бензин наше время дорожает, а стоимость электроэнергии мала. Все больше и больше повышается необходимость перехода от бензина и дизельного топлива, к более дешевым видам топлива. И мне стало интересно, как они устроены и получится ли у меня самостоятельно собрать свою модель электродвигателя.
Актуальность: На сегодняшний день практически нет отрасли техники и быта, где не использовались бы электродвигатели, поэтому мне стало интересно, как они устроены и получится ли у меня самостоятельно собрать простейшую модель электродвигателя.
Цель: познакомиться с историей и устройством электромагнитного двигателя, самостоятельно изготовить модель простейшего электромагнитного двигателя, являющиеся стартовой точкой создания современных электродвигателей.
Для достижения цели своей работы мне необходимо решить следующие задачи:
1. Познакомиться с историей создания электродвигателя;
2. Выяснить принципы работы электродвигателя;
3. Изучить область применения электродвигателей;
Практическая значимость: Полученную теоретическую информацию и собранную модель можно использовать на уроках физики при демонстрации строения электродвигателя, некоторых физических свойств и явлений.
История создания электродвигателей
Величайшим техническим достижением конца XIX века стало изобретение промышленного электродвигателя. Этот компактный, экономичный, удобный мотор вскоре сделался одним из важнейших элементов производства, вытеснив другие виды двигателей отовсюду, куда только можно было доставить электрический ток. Электрические двигатели появились еще во второй четверти XIX столетия, но прошло несколько десятилетий, прежде чем создались благоприятные условия для их повсеместного внедрения в производство. История электродвигателя - сложная и длинная цепь открытий, находок, изобретений.
Начальный период развития электродвигателя (1821 - 1834 гг.). Он тесно связан с созданием физических приборов для демонстрации непрерывного преобразования электрической энергии в механическую. В 1821 г. М. Фарадей, исследуя взаимодействие проводников с током и магнитом, показал, что электрический ток вызывает вращение проводника вокруг магнита, или вращение магнита вокруг проводника. Опыт Фарадея стал толчком для большинства ученых, изобретатели электродвигателя получили лучик надежды.
Первые электродвигатели напоминали по устройству паровые машины: двигатель Дж. Генри (1832 г.) и двигатель У. Пейджа (1864 г.) имели коромысла, кривошип, шатун, а также золотники (переключатели тока в соленоидах, заменявших собой цилиндр).
П. Барлоу предложил «колесо Барлоу». Оно состояло из постоянного магнита и зубчатых колес, скользящий контакт осуществлялся с помощью ртути, а питалось колесо от гальванического элемента.
Второй этап развития электродвигателей (1834 – 1860 гг.) характеризуется конструкциями с вращательным движением явнополюсного якоря. Однако вращательный момент на валу у таких двигателей обычно был резко пульсирующим.
В 1834 г. Б.С. Якоби создал первый в мире электрический двигатель постоянного тока, в котором реализовал принцип непосредственного вращения подвижной части двигателя. Этот двигатель имел две группы П-образных электромагнитов, из которых одна группа (4 электромагнита) располагались на неподвижной раме, а другая аналогичная – на вращающемся диске. В качестве источника питания электромагнитов применялась батарея гальванических элементов. Для изменения полярности электромагнитов использовался простейший коммутатор. Обмотки всех электромагнитов неподвижной рамы были соединены последовательно, и ток в них имел одно и тоже направление. Обмотки электромагнитов вращающегося диска были также соединены последовательно, но направление тока в них с помощью коммутатора изменялось 8 раз за один оборот вала, следовательно, изменялась их полярность, и они поочередно притягивались и отталкивались электромагнитами неподвижной рамы.
Такой двигатель получил название явнополюсного электродвигателя Якоби и был вполне работоспособным. В 1838 г. этот двигатель (0,5 кВт) был испытан на Неве для приведения в движение лодки с пассажирами, т. е. получил первое практическое применение.
Испытания различных конструкций электродвигателей привели Б.С. Якоби и других исследователей к следующим выводам:
– применение электродвигателей находится в прямой зависимости от удешевления электрической энергии, т.е. от создания генератора, более экономичного, чем гальванические элементы;
– электродвигатели должны иметь по возможности малые габариты и по возможности большую мощность и больший коэффициент полезного действия.
Третий этап в развитии электродвигателей (1860 – 1887 гг.) связан с разработкой конструкций с кольцевым неявнополюсным якорем и практически постоянным вращающим моментом.
На этом этапе нужно отметить электродвигатель итальянца А. Пачинотти (1860 г.). Его двигатель состоял из якоря кольцеобразной формы, вращающегося в магнитном поле электромагнитов. Подвод тока осуществлялся роликами. Обмотка электромагнитов включалась последовательно с обмоткой якоря (т.е. электромашина имела последовательное возбуждение). Габариты двигателя были невелики, он имел практически постоянный вращающий момент. В двигателе Пачинотти явнополюсный якорь был заменен неявнополюсным.
Барабанный якорь, в котором рабочим является проводник, составляющий виток, был изобретен лишь в 1872 г. В. Сименсом. Еще через 10 лет в железе якоря появились пазы для обмотки (1882 г.). Барабанный якорь машины постоянного тока стал таким, каким мы его можем видеть в настоящее время. Третий этап развития электродвигателей характеризуется открытием и промышленным использованием принципа самовозбуждения, в связи, с чем был окончательно осознан и сформулирован принцип обратимости электрической машины. Питание электродвигателей стало производиться от более дешевого источника электрической энергии – электромагнитного генератора постоянного тока. В 1886 г. электродвигатель постоянного тока приобрел основные черты современной конструкции. В дальнейшем он все более и более совершенствовался. Таким образом, общими усилиями множества ученых разных стран, на протяжении более полувека создавалась конструкция, которую можно назвать электродвигателем.
Устройство и принцип работы электродвигателя
Подавляющее большинство электрических машин работает по принципу магнитного отталкивания и притяжения. Если между северным и южным полюсами магнита поместить проволоку и пропустить по ней ток, то её вытолкнет наружу. Как это возможно? Дело в том, что проходя по проводнику, ток формирует вокруг себя круговое магнитное поле по всей длине провода.
При взаимодействии кругового поля проводника и однородного поля магнита, между полюсами магнитное поле с одной стороны ослабевает, а с другой усиливается. То есть среда становится упругой и результирующая сила выталкивает провод из поля магнита под углом 90 градусов в направлении, определяемом по правилу левой руки. Эта сила называется «амперовой».
Это явление использовали как основной принцип работы первых электродвигателей, этот же принцип используют и поныне. В двигателях постоянного тока малой мощности для создания постоянного магнитного поля применяются постоянные магниты. В электромоторах средней и большой мощности однородное магнитное поле создают с помощью обмотки возбуждения или индуктора.
Конструктивно все электрические двигатели постоянного тока состоят из статора и ротора (якоря), разделенных воздушным зазором.
Статор электродвигателя постоянного тока служит для создания неподвижного магнитного поля машины и состоит из станины, главных и добавочных полюсов. Станина служит для крепления основных и добавочных полюсов и является элементом магнитной цепи машины. На главных полюсах расположены обмотки возбуждения, предназначенные для создания магнитного поля машины, на добавочных полюсах - специальная обмотка, служащая для улучшения условий коммутации.
Якорь электродвигателя постоянного тока состоит из магнитной системы, собранной из отдельных листов, рабочей обмотки, уложенной в пазы, и коллектора служащего для подвода к рабочей обмотке постоянного тока.
Коллектор представляет собой цилиндр, насаженный на вал двигателя и избранный из изолированных друг от друга медных пластин. На коллекторе имеются выступы-петушки, к которым припаяны концы секций обмотки якоря. Съем тока с коллектора осуществляется с помощью щеток, обеспечивающих скользящий контакт с коллектором.
Щетки закреплены в щеткодержателях, которые удерживают их в определенном положении и обеспечивают необходимое нажатие щетки на поверхность коллектора. Щетки и щеткодержатели закреплены на траверсе, связанной с корпусом электродвигателя.
Итак, современный двигатель постоянного тока вместо одной рамки имеет якорь с множеством проводников, уложенных в пазы, а вместо постоянного подковообразного магнита имеет статор с обмоткой возбуждения с двумя и более полюсами. На рисунке показан двухполюсный электромотор в разрезе.
Принцип его работы следующий. Если по проводам верхней части якоря пропустить ток движущийся «от нас» (отмечено крестиком), а в нижней части — «на нас» (отмечено точкой), то согласно правилу левой руки верхние проводники будут выталкиваться из магнитного поля статора влево, а проводники нижней половины якоря по тому же принципу будут выталкиваться вправо. Поскольку медный провод уложен в пазах якоря, то, вся сила воздействия будет передаваться и на него, и он будет проворачиваться. Дальше видно, что когда проводник с направлением тока «от нас» провернётся вниз и станет против южного полюса создаваемого статором, то он будет выдавливаться в левую сторону, и произойдёт торможение. Чтобы этого не случилось нужно поменять направление тока в проводе на противоположное, как только будет пересечена нейтральная линия. Это делается с помощью коллектора – специального переключателя, коммутирующего обмотку якоря с общей схемой электродвигателя.
Таким образом, электрическая энергия, которая подается на статор, превращается в механическую энергию ротора. К вращающемуся валу можно подключать различные механизмы, выполняющие полезную работу.
Характеристики электродвигателя
На данный момент электродвигатели имеют следующие характеристики. Максимальная мощность измеряется в Ваттах. Этот параметр зависит от конструкции, материала изготовления, и технологии создания. Несколько двигателей имеющие одинаковую массу и размер могут иметь различную мощность исключительно из-за технологии производства. Как правило, именно этот параметр задает ценовую категорию для двигателя. Далее рассматривают номинальное напряжение и ток, а так же сопротивление обмотки, эти параметры неизменно влияют друг на друга. При более низком сопротивлении, возрастает максимальное значение силы тока. Третьей характеристикой являются номинальные обороты в минуту. Конструкция современного двигателя направлена на получение более высоких оборотов, или же наивысшего момента на валу. Следовательно, двигатель с большим диаметром имеет увеличенный высокий момент и уменьшенные обороты.
Виды электродвигателей
По роду тока электродвигатели стали делиться на машины переменного и постоянного тока; по принципу действия машины переменного тока делятся на синхронные и асинхронные.
Асинхронные двигатели отличаются простотой конструкции, малой стоимостью, надежностью в работе. Они являются самым распространенным видом двигателей.
На статоре асинхронного двигателя закреплены обмотки, создающие переменное вращающееся магнитное поле, концы которой выводятся на клеммную коробку. Поскольку при работе двигатель нагревается, на его валу устанавливается вентилятор системы охлаждения.
Ротор асинхронного двигателя выполнен с валом как одно целое. Он представляет собой металлические стержни, замкнутые между собой с двух сторон, из-за чего такой ротор еще именуется короткозамкнутым.
Магнитное поле вращается за счет постоянной смены полюсов. При этом соответственно меняется направление тока в обмотках. Скорость вращения вала асинхронного двигателя зависит от числа полюсов магнитного поля.
Устройство синхронного электродвигателя немного отличается. Как понятно из названия, в этом двигателе ротор вращается с одной скоростью с магнитным полем. Он состоит из корпуса с закрепленными на нем обмотками и ротора или якоря, снабженного такими же обмотками. Концы обмоток выводятся и закрепляются на коллекторе. На коллектор или токосъемное кольцо подается напряжение посредством графитовых щеток. При этом концы обмоток размещены таким образом, что одновременно напряжение может подаваться только на одну пару.
В отличие от асинхронных на ротор синхронных двигателей напряжение подается щетками, заряжая его обмотки, а не индуцируется переменным магнитным полем. Направление тока в обмотках ротора меняется параллельно с изменением направления магнитного поля, поэтому выходной вал всегда вращается в одну сторону. Синхронные электродвигатели позволяют регулировать скорость вращения вала путем изменения значения напряжения. На практике для этого обычно используются реостаты.
Первый асинхронный двигатель, в основе работы которого заложено вращающееся магнитное поле, появился в 1870 году. Авторами эффекта вращающегося магнитного поля независимо друг от друга стали два ученых: Г.Феррарис и Н. Тесла. Последнему принадлежит также идея создания бесколлекторного электродвигателя. По его чертежам были построены несколько электростанций с применением двухфазных двигателей переменного тока. Следующей более удачной разработкой оказался трехфазный двигатель, предложенный М.О. Доливо-Добровольским. Его первая действующая модель была запущена в 1888 году, после чего последовал ряд более совершенных двигателей.
Достоинства и недостатки электродвигателя
На сегодня электродвигатели являются одними из самых распространенных видов силовых установок, и тому есть немало причин. У них высокий КПД порядка 90%, а иногда и выше, довольно низкая себестоимость и простая конструкция, они не выделяют вредных веществ в процессе эксплуатации, дают возможность плавно менять скорость во время работы без использования дополнительных механизмов типа коробки передач, надежны и долговечны.
Среди недостатков всех типов электромоторов — отсутствие высокоемкостного аккумулятора электроэнергии для автономной работы.
На сегодняшний день двигатели постоянного тока мало используются на производстве. Из недостатков этого типа электрических машин можно отметить быстрый износ щёточно-коллекторного узла. Преимущества – хорошие характеристики запуска, лёгкая регулировка частоты и направления вращения, простота устройства и управления. Электродвигатель переменного тока менее мощный, у него сложно регулировать скорость в широком диапазоне, он имеет меньший КПД.
Если же сравнивать асинхронный и синхронный электродвигатель переменного тока, то первый имеет более простую конструкцию и лишен «слабого звена» — графитовых щеток. Именно они обычно первыми выходят из строя при поломке синхронных двигателей. Вместе с тем, у него сложно получить и регулировать постоянную скорость, которая зависит от нагрузки. Синхронные двигатели позволяют регулировать скорость вращения с помощью реостатов.
Применение электродвигателей
Без электроники сегодня никуда. С каждым днем количество приборов, работающих от электричества, всё возрастает. Электродвигатели получили широкое применение не только во многих отраслях промышленности, но и в предметах и устройствах, окружающих нас каждый день, так как простота их конструкции, надежность, долговечность и высокий показатель КПД делает их практически универсальными. Фены, вентиляторы, насосы, некоторые виды транспорта - вот лишь некоторый перечень устройств, работающих не без помощи электродвигателей. Относительной простотой конструкции и надежностью в эксплуатации отличаются именно асинхронные электродвигатели. Они хорошо используются в приводах деревообрабатывающих, металлообрабатывающих и других видов станков, кузнечнопрессовых, грузоподъемных, ткацких, швейных, землеройных машин, вентиляторов, насосов, компрессоров, в ручном электроинструменте, в центрифуге, в лифтах, в бытовых приборах и т.д. однако имеют ограниченный диапазон частоты вращения и низкий коэффициент мощности при малых оборотах.
Крановые электродвигатели применяются в жилищном и капитальном строительстве, в горнодобывающей и металлургической промышленности, энергетике, на транспорте. Одним из видов транспорта, где используются электродвигатели, является метро.
Со временем мощность электродвигателей выросла от пятидесяти ватт до двухсот киловатт. Притом новые модели электродвигателей имеют сравнительно небольшие габариты: они выглядят, примерно, как швейная машинка. Более того, новые электродвигатели могут разгоняться до десятков тысяч оборотов в минуту за считанные секунды. Согласитесь, время не стоит на месте, техника совершенствуется и имеет уже более широкие возможности.
Заключение
Жизнь современного человека немыслима без использования электродвигателей. Их можно найти в автомобиле и в пылесосе, электромясорубке, кухонном комбайне, кофемолке, в сложнейших станках и в обычных детских игрушках. Они есть практически везде, хотя и отличаются между собой типом, строением и рабочими характеристиками. Трудно представить, что каких-то 150 лет назад человечество даже не знало о возможности существования электродвигателя.
Задачи, поставленные мною в начале работы, были решены, цель достигнута.
Познакомился с историей электродвигателей, узнал, что, как выглядели первые двигатели, как они работали и какие ученые работали над созданием электромагнитных двигателей.
Изучил область применения электродвигателей, и узнал, что они получили широкую область применения.
Проведя большую работу по изучению литературы о создании первых электродвигателей, о физических принципах их работы, о внедрении их сегодня во все отрасли жизни, я могу с уверенностью сказать, что электродвигатель является одним из величайших изобретений человека.
Процесс сбора и изучения информации, а так же изготовление модели мне были очень интересны, результатом проделанной работы доволен. Я считаю, что мою работу можно использовать при изучении электромагнитных явлений и изготовлении электромагнита.
Для того чтобы сделать электродвигатель из батарейки, нам понадобятся:
Зарядное устройство;
Тонкогубцы;
Нож;
Магнит;
Проволока;
Соединительные провода с зажимами;
Деревянный брусок.
За счет источника электричества (батарейки) заряженные частицы в проводнике (проволоке) упорядоченно движутся. При воздействии на него магнитным полем траектория частиц отклоняется согласно правилу «левой руки». Когда направление силы тока перпендикулярно направлению силовых линий магнитного поля, частицы двигаются по окружности.
Для катушки необходим неизолированный медный провод диаметром от 0.6 до 1 мм. Для намотки катушки потребуется цилиндрический каркас (батарейка), на который наматывается 10-15 витков, оставляя свободными по 40 мм провода с каждого конца. Свободные концы провода необходимо обернуть вокруг витков катушки таким образом, чтобы скрепляющие витки были симметрично расположены друг относительно друга. Помимо создания дополнительного магнитного поля эти витки помогут сохранить форму катушки.
Катушка (подвижная часть электродвигателя) размещается на двух держателях. Держатели изготавливают из неизолированного провода диаметром от 1 мм. Помимо функции поддержания катушки, держатели позволяют проходить электрическому току через катушку.
Свободным концом держатели присоединяются к полюсам аккумулятора так, чтобы образовывался замкнутый контур. Основанием электродвигателя служит деревянный брусок. Магнит необходимо устанавливать в непосредственной близости от катушки. Общий вид электродвигателя приведен на рисунке в приложении к работе.
Катушке необходимо придать начальный вращающий момент аккуратно крутнув ее.
Использованные источники
1. https://www.youtube.com/watch ?v=NTom7GHt5BY
2. Самодельные электрические и паровые двигатели. А. Абрамов, П. Хлебников, Государственное издательство Детской литературы Министерства Просвещения РСФСР.