kopilkaurokov.ru - сайт для учителей

Создайте Ваш сайт учителя Курсы ПК и ППК Видеоуроки Олимпиады Вебинары для учителей

Методические рекомендации для педагогов. "РАЗВИТИЕ МАТЕМАТИЧЕСКИХ СПОСОБНОСТЕЙ ДОШКОЛЬНИКОВ С ПОМОЩЬЮ ФЛЕКСАГОНОВ"

Нажмите, чтобы узнать подробности

Консультация для педагогов. Эффективным средством математического моделирования с дошкольникамиявляется технология математического моделирования на основе флексагонов, так как особенность игровых материалов для данной технологии состоит в неограниченных комбинаторных возможностях, кроющихся в обычном листе бумаги.

Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Наладить дисциплину на своих уроках.
Получить возможность работать творчески.

Просмотр содержимого документа
«Методические рекомендации для педагогов. "РАЗВИТИЕ МАТЕМАТИЧЕСКИХ СПОСОБНОСТЕЙ ДОШКОЛЬНИКОВ С ПОМОЩЬЮ ФЛЕКСАГОНОВ"»

КОНСУЛЬТАЦИЯ ДЛЯ ПЕДАГОГОВ


РАЗВИТИЕ МАТЕМАТИЧЕСКИХ СПОСОБНОСТЕЙ ДОШКОЛЬНИКОВ С ПОМОЩЬЮ ФЛЕКСАГОНОВ


В настоящее время одним из перспективных подходов к математическому развитию ребенка является ориентация на математическое моделирование, с помощью которого дети активно овладевают построением и использованием разного рода предметных, графических и мысленных моделей.

Осуществляя поиск эффективных средств математического моделирования с дошкольниками, я пришла к выводу, что технология математического моделирования на основе флексагонов наиболее эффективна для математического развития старших дошкольников, так как особенность игровых материалов для данной технологии состоит в неограниченных комбинаторных возможностях, кроющихся в обычном листе бумаги. Если считать, что идеальный интеллектуальный конструктор должен состоять из одной детали, с помощью которой создается бесконечное разнообразие форм, то флексагон — именно такой конструктор.

Флексагон — “гнущийся многоугольник” — одна из простейших математических абстракций. В его основе лежат сенсорные эталоны формы, при правильной сборке флексагон содержит “скрытые” поверхности.

Внимательный анализ разверток флексагонов позволил мне выявить их развивающий математический потенциал для дошкольников. Флексагоны способствуют развитию мелкой моторики, пространственного воображения, памяти, внимания, терпения. При специально продуманной раскраске активизируют формирование представлений по всем разделам математики для дошкольников.

Использование флексагонов в развитии элементарных математических представлений детей — глубоко творческий процесс, диалектично сочетающий единство созидания и отрицания. Поэтому, проектируя авторскую локальную методику использования флексагонов, я, прежде всего, глубоко изучила имеющиеся теоретические и практические наработки по интересующей меня проблематике, учла специфику детей своей группы, и только на этой базе создавала новшества.

Впервые в своей практике я использовала флексагоны в математическом развитии детей, во - первых, как средство порядкового и количественного счета. С помощью флексагонов знакомила детей с составом числа из единиц; отношениями “больше”, “меньше” и др.; цифрами; учила составлять и решать простые и косвенные арифметические задачи. Для этого

мной использовались разнообразные раскраски сторон флексагона, учитывающие интересы детей конкретной группы.

Во-вторых, в разделе геометрические фигуры — знакомить детей с треугольником, кругом, эллипсом, квадратом, прямоугольником, четырехугольниками как классом фигур и т. д. Флексагоны помогут находить сходства и различия фигур, производить их классификацию.

В-третьих, флексагоны хороши для освоения детьми понятия “время”. Можно с их помощью показать циферблат часов, удобно показать сезонные явления, дни недели, месяцы.

Процесс развития сенсорики, интеллектуальной культуры и творческой активности сопровождался поэтапным введением флексагонов в занятия.

1 этап
  1. При ознакомлении с флексагоном я использовала прием проблемной ситуации: персонажем получен волшебный подарок, что с ним делать — неизвестно; поможем персонажу.

  2. предлагала детям рассказать, во что с флексагоном можно играть. Уточняется, к какому классу можно отнести эту фигуру.

  3. Я “случайно” складывала флексагон так, что он раскрывался. Давала детям время поэкспериментировать с флексагоном.

  1. этап
  1. Я предлагала детям несколько минут для припоминания свойств флексагона. Как называется эта фигура? Сколько имеет сторон, вершин, углов?

  2. Предлагала сложить флексагон пополам. Назвать получившуюся фигуру, сосчитать углы, назвать фигуры, из которых состоит трапеция (треугольник, ромб). Детям предлагала выложить трапецию из реальных геометрических фигур, или — только назвать их.

  3. Предлагала самостоятельно сложить ромб, сосчитать углы; раскрыть флексагон и рассказать о нем.

  1. этап
  1. Вспоминала вместе с детьми, что такое ось симметрии. Предлагала показать и сосчитать количество осей симметрии у флексагона. Показать их.

  2. Исследовательская задача: если вывернуть флексагон, изменится ли количество осей симметрии? Почему?

  3. Задача. Сложите флексагон пополам. Сколько одинаковых фигур получилось? Какие это фигуры? Сколько у каждой фигуры углов? Сколько углов будет у 2-х трапеций, составляющих плоскость флексагона? А сколько углов у флексагона?

Анализируя проведенные занятия, следует отметить, что эффект “фокуса” при внесении флексагона вызвал стойкий интерес детей, создал мотивацию на несколько занятий вперед. Поисковая деятельность детей мотивировалась и интересом родителей к математическим головоломкам, смоделированным и показанным детьми, и разнообразием вариантов “математической начинки” флексагонов.

Таким образом, технологический процесс занятия включает в себя ряд взаимозависимых и взаимосвязанных компонентов, обеспечивающих эффективное усвоение учебного материала и включение его в деятельность.

Проведенная опытно-экспериментальная работа, теоретическое моделирование и анализ математической сущности флексагонов позволили сформулировать следующие методические рекомендации для педагогов дошкольных учреждений:

Начиная занятие по знакомству детей с флексагоном, советую параллельно вести закрепление различения цветов, их оттенков, так как в группу детского сада вносятся разноцветные флексагоны.

Старшим дошкольникам можно предлагать собирать флексагоны по цвету. Например: каждая сторона гексагексафлексагона может состоять из шести треугольников дополнительных цветов, отличающихся на 1–3 тона от основного цвета. Данное упражнение рекомендуем использовать для развития мелкой моторики и стимулирования интеллектуальной активности детей.

Использование флексагонов как средства математического развития ребенка показало их эффективность для решения проблемы гармонизации аффекта и интеллекта, что, в свою очередь, позволяет решать широкий спектр задач, требующих высокого уровня обобщения без классической формализации. При этом процесс развития сенсорики, интеллектуальной культуры и творческой активности сопровождается положительными эмоциями детей за счет вариантов “познавательной” раскраски флексагонов.

Вывод. Проделанная мною работа дала следующие результаты: к концу года дети научились соотносить форму предметов с геометрическими формами, выделять элементы геометрических фигур (угол, вершина, стороны), У них сформированы знания базовых понятий флексагонов, внутренняя мотивация и устойчивый интерес к данному виду деятельности.

Ощущения того, что все мои старания не прошли даром, придавало мне сил в работе. Ведь восторг, радость, удивление детей при достижении конечного результата – самое большое вознаграждение в моей работе и, естественно, стимул двигаться дальше в своей профессии.


Использованная литература:
    1. Афонькин С. Игры и фокусы с бумагой / С. Афонькин, Е. Афонькина. — М.: Рольф, АКИМ, 1999. — С. 12–67.

    2. Белошистая А.В. Формирование и развитие математических способностей дошкольников: Вопросы теории и практики: Курс лекций. — М.: ВЛАДОС, 2003. — С. 11–77.

    3. Михайлова З.А. Игровые занимательные задачи для дошкольников. — М.: Просвещение, 1990.

    4. Репина Г.А. Технологии математического моделирования с дошкольниками. — Смоленск, 1999.

    5. Репина Г.А. Перспективные подходы к математическому развитию ребенка. — Смоленск, 2000.

    6. 365 развивающих игр / Сост. Е.А. Беляков. — М.: Рольф, Айрис-пресс, 1998.


Получите в подарок сайт учителя

Предмет: Дошкольное образование

Категория: Прочее

Целевая аудитория: Дошкольникам.
Урок соответствует ФГОС

Автор: Абрамова Наталья Дмитриевна

Дата: 21.03.2019

Номер свидетельства: 504091


Получите в подарок сайт учителя

Видеоуроки для учителей

Курсы для учителей

ПОЛУЧИТЕ СВИДЕТЕЛЬСТВО МГНОВЕННО

Добавить свою работу

* Свидетельство о публикации выдается БЕСПЛАТНО, СРАЗУ же после добавления Вами Вашей работы на сайт

Удобный поиск материалов для учителей

Проверка свидетельства