kopilkaurokov.ru - сайт для учителей

Создайте Ваш сайт учителя Курсы ПК и ППК Видеоуроки Олимпиады Вебинары для учителей

Методическая разработка теоретического занятия для преподавателя по теме: ”Нуклеиновые кислоты ДНК, РНК. АТФ, гормоны, витамины”.

Нажмите, чтобы узнать подробности

  Основным предметом изучения биологии являются "молекулы жизни", в том числе нуклеиновые кислоты, белки, которым посвящен это урок. Во многих областях химии, биологии, сельского хозяйства и медицины понятие "нуклеиновые кислоты" является основополагающим. С ними связаны все проявления свойств живого: размножение и развитие организмов, белковый и липидный обмены. 

Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Наладить дисциплину на своих уроках.
Получить возможность работать творчески.

Просмотр содержимого документа
«Методическая разработка теоретического занятия для преподавателя по теме: ”Нуклеиновые кислоты ДНК, РНК. АТФ, гормоны, витамины”. »

ГОУ СПО Чайковский медицинский колледж

Кабинет биологии.


Утверждено на заседании ЦМК № 3

«___ » _________ 2015 г.

Протокол № ______________

Председатель ЦМК _____




Методическая разработка теоретического занятия

для преподавателя


по теме: ”Нуклеиновые кислоты ДНК, РНК.

АТФ, гормоны, витамины”.






Дисциплина: «Общая биология»


Специальность: «Сестринское дело» 060109




Составитель: преподаватель

биологии Лаврушина Л.Л.



Рецензент: преподаватель анатомии и физиологии Коврижных Т.В.





2015 г.



Содержание:


  1. Выписка из программы.

  2. Пояснительная записка.

  3. Учебно-методическая карта занятия.

4. Технологическая карта занятия по теме ”Нуклеиновые кислоты ДНК, РНК.

АТФ, гормоны, витамины”.

5. Теоретический материал занятия.

6. Дидактические материалы к уроку.







































РЕЦЕНЗИЯ


на методическую разработку теоретического занятия по общей биологии преподавателя Лаврушиной Л.Л. по теме «Нуклеиновые кислоты, АТФ, гормоны, витамины». Данная методическая разработка составлена согласно программе с учетом требования ГОС.

Вид занятия: комбинированное, информационно-иллюстративное, с фрагментом урока - конференции.

В материалах заложены большие интегрированные возможности, это позволило в рамках данной темы показать внутридисциплинарные и междисциплинарные связи.

В учебно-методической карте отражены не только цели, этапы занятия, хронокарта, дидактические единицы, но и педагогический менеджмент, который способствует усвоению нового материала, снятию психологического напряжения.

Тема «Нуклеиновые кислоты» является достаточно сложной, важна в изучении, т.к. в нее входят ведущие идеи курса.

В ходе занятия прослеживаются элементы обобщения и систематизации, а также промежуточный контроль знаний (см. приложение №1).

Освещены исторические данные и методические вкрапления - «Это интересно».

Предусмотрена не только индивидуальная самостоятельная работа с учебным пособием, но и творческая: рефераты-сообщения в изложении нового материла (см. приложение №4), тренировочный авторский мини-конспект в домашних заданиях.

Список библиографии достаточен.


Структура и оформление методической разработки говорит о высоком творческом потенциале Любовь Леонидовны, позволяет в методическом ключе решать проблемы подготовки специалистов.


Председатель методического объединения №3 общепрофессиональных дисциплин, преподаватель анатомии и физиологии высшей категории, практический психолог Т.В. Коврижных

12 марта 2015 г.







Выписка из программы.


Тема: «Нуклеиновые кислоты ДНК, РНК. АТФ, гормоны, витамины»


Типы нуклеиновых кислот. Особенности строения молекулы ДНК. Механизм удвоения ДНК. Роль механизма в передаче наследственной информации.

Особенности строения и функции различных видов РНК в клетке. Суть функциональной взаимосвязи ДНК и РНК.

Строение АТФ и ее роль в клетке как универсального аккумулятора энергии. Витамины. Значение витаминов в процессе жизнедеятельности организма. Регуляторные и сигнальные вещества.

Студент должен знать:

Строение молекул ДНК, РНК.

Передача наследственной информации.

Основные виды РНК.

Значение АТФ в клетке.

Биологическую роль витаминов.


Студент должен уметь:

Зная фрагмент одной цепи ДНК достраивать вторую цепь.





































Пояснительная записка


к уроку «Нуклеиновые кислоты ДНК, РНК. АТФ, гормоны, витамины».


Основным предметом изучения биологии являются "молекулы жизни", в том числе нуклеиновые кислоты, белки, которым посвящен это урок. Во многих областях химии, биологии, сельского хозяйства и медицины понятие "нуклеиновые кислоты" является основополагающим. С ними связаны все проявления свойств живого: размножение и развитие организмов, белковый и липидный обмены.


Тема «Нуклеиновые кислоты ДНК, РНК. АТФ, гормоны, витамины» является средней по сложности темой, проблемным в изучении этой темы я считаю вычленение взаимосвязей между уровнями организации жизни и компонентами внутри уровневой организации. Также сложность вызывает обобщение и систематизация материала по теме, выход на творческий уровень.


Данная тема важна в изучении, т.к. в неё входят ведущие идеи курса, определяющие логику развития содержания учебного предмета «Общей биологии».

Тема «Нуклеиновые кислоты ДНК, РНК. АТФ, гормоны, витамины» является актуальной для каждого человека, т.к. она помогает понять сущность жизни, объясняет причины многообразия биологических видов, помогает осознать важную роль каждого компонента живого для функционирования системы организма в целом.

Для оптимизации учебного процесса выбрано объяснительно – иллюстрированное занятие.


Данная система уроков наиболее эффективна, потому что она отвечает логике изложения темы. Так как большую часть материала учащиеся уже знают из курса биологии 6- 8 класс, так как тема содержит большой объём материала, то в ходе лекции включены элементы обобщения и систематизации, а так же промежуточный контроль.






Преподаватель биологии Лаврушина Л.Л.





Теоретическое занятие по теме:

Тема: «Нуклеиновые кислоты ДНК, РНК. АТФ, гормоны, витамины»


Тип урока: комбинированное, объяснительно – иллюстрированное занятие с фрагментом урока – конференции.


Цель занятия: углубить и обобщить знания о строении и значении нуклеиновых кислот, сформирование знания об энергетическом веществе клетки – АТФ, систематизировать знания о витаминах и гормонах.

Учебные:

  • ввести понятие нуклеиновых кислот,

  • раскрыть особенности их состава и строения, функций,

  • познакомить с азотистыми основаниями и пространственной организацией ДНК и РНК,

  • основными видами РНК,

  • определить черты сходства и различия между РНК и ДНК,

  • сформировать понятие об энергетическом веществе клетки – АТФ, изучить строение и функции этого вещества.

  • Разновидности витаминов, гормонов.


Развивающие:

  • составлять общую характеристику нуклеиновых кислот,

  • развивать умение анализировать, выделять главное, проводить аналогию, логически мыслить,

  • формировать понимание ценности жизни человека.

  • Формировать клиническое мышление.



Методические:

  • Поддерживать межпредметные связи.


Воспитательные:

  • Воспитывать потребность к самообразованию.

  • Прививать аккуратность в работе, коммуникабельность.


Реализация праксиологического принципа.

Междисциплинарные связи:

обеспечивающие изучение отдельных тем во многих клинических дисциплинах и дальнейшей практической деятельности.


  • Микробиология.

  • Анатомия и физиология человека.

  • Патология и др.

  • Терапия

  • Педиатрия и т.д.


Внутридисциплинарные связи.


  • Генетическая информация. Удвоение ДНК. Образование информационной РНК по матрице ДНК.

  • Биосинтез белка. Регуляция транскрипции и трансляции

  • Генетический код.

Оснащение занятия:

  • Методическая разработка для преподавателя.

  • Раздаточный материал.

  • Тесты.

Место проведения:

  • Кабинет биологии

Время занятия: 90 минут












Технологическая карта занятия.




№ п/п

Ход учебного

занятия,

время

Цели этапа

Содержание

учебного материала

1.


Организационный момент-

1- 2 мин.


Вводное слово пре­подавателя. 2-3 мин

Проверка готовности студентов. Переключение студентов на новый вид занятия, мобилизация их внимания.



Приветствие и вступительное слово преподавателя. Сообщается тема и план проведе­ния лекции.

Объясняются цели лекции, значе­ние данной темы в подготовке ме­дицинского работника, значение этой темы для других дисциплин, изучаемых в колледже.

2.


Актуализация опорных знаний

10мин.


Выяснить уровень знаний студентов по теме ”Органические вещества клетки. Строение и функции белков”.

Обратить внимание на допущенные ошибки.

Индивидуальные карточки.

Тестовые задания.

Приложение №1

3.


Изложение нового материала.

53-60 мин


Дать возможность воспри­ятию информации через визуализацию. Максимально приблизить­ся к выполнению общих целей занятия: учебных, методических, развиваю­щих, воспитательных.


Теоретический мате­риал методической разработки.

Приложение №2.

Тезисы студенческих докладов. Приложение № 4.

4.


Закрепление материала 10-12 минут

Связать теоретический материал с практической деятельностью.

Активизация учебного процесса. Выявление степени достижения цели. Проведение коррекции знаний.


Фронтальный опрос.

Тест.

Работа с терминами.

Приложение №3.

5.


Подведение итогов. Обобщение. Домашнее задание.

5 мин.


Коррекция самооценки, создание мотивации для последующей работы. Индивидуализация домашнего задания.




  


Делается заключение по данной теме, формулируются выводы. Домашнее задание в трех уровнях:

1. выучить обязательный минимум
конспекты лекций,

2. тренировочный авторский мини -
конспект-шпаргалка.


Методы и средства обучения

Педагогический менеджмент

Вербальный и невербальный контакт.

Знакомство студентов с методическими материалами.

С целью физиологической и психологической адаптации создать благоприятный климат в аудитории. Создать установку на восприятие нового материала, опираясь на теплоту, искренность, доброжелательность, профессиональную



Индивидуальные тестовые задания, задание с последующим взаимоконтролем.



Благожелательный тон, иногда совет.

Обеспечить чувство защищенности, снять тревогу и стресс.

Теоретический материал занятия.

Ведение к самоанализу. Умеренный темп изложения, научным языком, эмоционально окрашенный, активизирующий все каналы восприятия. Соблюдение культуры речи. Организация восприятия материала. Осуществление личностно – ориентированного подхода с уважением личности студента и его позиции.


Индивидуальная самостоятельная работа с учебным пособием, дидактическим раздаточным материалом. Использование единого режима работы.

Использова­ние взаимоконтроля.

Закрепление полученных знаний (по типу фронталь­ного опроса).


Невербальное управление. Вербальное поощрение (личностно - ориентированное, благожела­тельный тон, совет)

Краткий анализ хода занятия с выявлением ошибок. Самостоятельная индивидуальная работа студентов по их собственному выбору и пониманию.

Атмосфера корректности, этичности, доброжелательности, осуществле­ние личностно - ориентированного подхода с уважением личности сту­дента и его позиции.
































Вариант I

1. Полимеры – это...

2. Углеводы образованы атомами:

а) углерода, водорода, азота;
б) углерода, кислорода, азота;
в) углерода, водорода, кислорода.

3. К углеводам (1 – моносахаридам, 2 – дисахаридам, 3 – полисахаридам) относятся:

А. Сахароза, лактоза, мальтоза.
В. Гликоген, крахмал, целлюлоза.
С. Фруктоза, глюкоза.

4. Углеводы в клетке выполняют функции:

а) структурную, энергетическую, каталитическую, запасающую;
б) каталитическую, энергетическую, сигнальную, запасающую;
в) структурную, энергетическую, транспортную, запасающую;
г) структурную, энергетическую, сигнальную, запасающую.

5. Липиды образованы атомами:

а) углерода, водорода, азота;
б) кислорода, водорода, азота;
в) углерода, водорода, кислорода.

6. Липиды растворяются в:

а) эфире, воде, хлороформе;
б) эфире, воде, бензоле;
в) эфире, хлороформе, бензоле.

7. Липиды в клетке выполняют функции:

а) транспортную, энергетическую, запасающую, термоизоляционную;
б) структурную, транспортную, энергетическую, сигнальную, термоизоляционную;
в) транспортную, информационную, энергетическую, запасающую, сигнальную;
г) структурную, энергетическую, запасающую, сигнальную, термоизоляционную.

8. Мономерами белков являются:

а) угольная кислота;

б) аминокислота;

в) глюкоза;

г) нуклеотид;

д) фосфорная кислота.

9. Свойства белков определяются:

а) количеством аминокислот в белке;
б) длиной цепи белковой молекулы;
в) последовательностью аминокислот в белке.

10. Вторичная структура белка представляет собой:

а) спираль с разным расстоянием между витками;
б) двойную спираль;
в) спираль, свернутую в клубок;
г) одинарную спираль.

11. Четвертичная структура белка – это...



12. Первичная структура белка образована связями:

а) пептидными;

б) водородными;

в) гидрофобными.



Ответ: 2-в, 3-1 С, 2 А, 3 В, 4-г, 5-в, 6-в, 7-г, 8-б, 9-в, 10-г























Вариант II

1. Органическими веществами называются...

2. Химические элементы, преобладающие в живой природе:

а) С, Н, О, N;

б) С, Н, О, Si;

в) С, О, N, Аl;

г) С, Н, О, N, Mg

д) С, Н, О, Fe


3. В каких клетках содержится больше углеводов?


а) В растительных

б) В животных

в) Одинаковое количество в тех и в других клетках.


4. Какими свойствами обладают полисахариды?

а) Хорошо растворимы в воде, сладкие на вкус.

б) Плохо растворимы в воде, сладкие на вкус?

в) Теряют сладкий вкус и способность растворяться в воде.


5. Основные биологические функции углеводов.

а) Защитная

б) Энергетическая и строительная.

в) Энергетическая и защитная.


6. Какое свойство липидов лежит в основе энергетической функции?

а) Гидрофобность

б) Плохая теплопроводность

в) Окисление жиров.

7. Если вам дано 2 вещества и сказано, что одно из них глюкоза, а другое крахмал, каким из способов вы абсолютно точно сможете уста­новить, где у вас глюкоза, а где крахмал?

а) По запаху

б) По растворимости в воде.

в) По цвету.

8. Напишите общую формулу углеводов.

9. Какие из перечисленных ниже углеводов характерны для животных организмов:

а) сахароза;

б) глюкоза;

в) галактоза;

г) фруктоза;

д) крахмал;

е) гликоген;

ж) клетчатка;

з) хитин.

10. Из предыдущего списка выпишите полисахариды, которые характерны для растений.

11. Отметьте из списка функций те, которые могут выполнять и углеводы, и липиды:

а) структурная;
б) энергетическая;
в) запасающая;
г) защитная;
д) регуляторная;
е) источник воды.

12. Химические реакции в клетке не могут идти без:

а) белков;

б) липидов;

в) углеводов;

г) ферментов.



Ответы: 2 -а; 3-а; 4 -в; 5-б; 6-в; 7-б, 9-б,е,з; 10-а,в,е,ж,и; 11-а,б,в; 12-г.
















































План изложение нового материала:



1. История изучения нуклеиновых кислот.
2. ДНК – состав, строение, виды, функции,

Принцип комплементарности.
3. РНК – состав, строение, виды, функции.
4. АТФ – строение и функции.

5. Доклады студентов. Гормоны.

6. Закрепление данной темы.

7. Домашнее задание.



1. История изучения нуклеиновых кислот.

Какое вещество является носителем наследственной информации? Какие особенности его строения обеспечивают многообразие наследственной информации и ее передачу?

В апреле 1953 года великий датский физик Нильс Бор получил письмо от американского ученого Макса Дельбрюка, где он писал:"Потрясающие вещи происходят в биологии. Мне кажется, что Джеймс Уотсон сделал открытие, сравнимое с тем, что сделал Резерфорд в 1911 году (открытие атомного ядра)".

Джеймс Дьюи Уотсон родился в США в 1928 году. Еще студентом Чикагского университета он занялся самой актуальной тогда проблемой в биологии - ролью генов в наследственности. В 1951 году, приехав на стажировку в Англию, в Кембридж, он знакомится с Френсисом Криком.

Френсис Крик почти на 12 лет старше Уотсона. Он родился в 1916 году и по окончании Лондонского колледжа работал в Кембриджском университете.

В конце 19 века известно, что в ядре находятся хромосомы и они состоят из ДНК и белка. Знали, что ДНК передает наследственную информацию, но главное оставалось тайной. Как же работает такая сложная система? Решить эту задачу можно было, только узнав устройство загадочной ДНК.

Уотсон и Крик должны были придумать такую модель ДНК, которая соответствовала бы рентгеновской фотографии. Моррису Уилкинсу удалось “сфотографировать” молекулу ДНК с помощью рентгеновских лучей После 2-х лет кропотливой работы ученые предложили изящную и простую модель ДНК Потом еще 10 лет после этого открытия ученые разных стран проверяли догадки Уотсона и Крика и, наконец, вердикт был вынесен: “Все верно, ДНК устроена именно так!” Уотсон, Крик и Моррис Уилкинс получили за это открытие в 1953 году Нобелевскую премию.








2. ДНК – состав, строение, виды, функции,

Принцип комплементарности.

ДНК - полимер.

Что такое полимер?

Что такое мономер?

В молекуле ДНК обнаружены различные азотистые основания:

Аденин (А), обозначим это азотистое основание

Тимин (Т), обозначим это азотистое основание

Гуанин (Г), обозначим это азотистое основание

Цитозин (Ц), обозначим это азотистое основание

Вывод, что нуклеотидов - 4, и они отличаются только азотистыми основаниями.

Цепочка ДНК состоит из чередующихся нуклеотидов, связанных ковалентной связью: сахар одного нуклеотида и остаток фосфорной кислоты - другого нуклеотида. В клетке обнаружено не просто ДНК, состоящее из одной нити, а более сложное образование. В этом образовании две нити нуклеотидов связанные азотистыми основаниями (водородными связями) по принципу комплементарности.

Можно предположить, что получающаяся цепочка ДНК сворачивается в спираль из-за разного количества водородных связей между азотистыми основаниями разных цепочек и таким образом принимает самую выгодную форму. Такая структура достаточно прочная, разрушить ее трудно. И, тем не менее, это происходит в клетке регулярно.



Функции:

  1. Хранение наследственной информации.

  2. Воспроизведение наследственной информации.

  3. Передача наследственной информации.





































3. РНК – состав, строение, виды, функции.


Рибонуклеиновая кислота (РНК), также линейный полимер, но гораздо более короткий. Основания РНК комплементарны основаниям ДНК, но в молекуле РНК однооснование – тимин (Т) – заменено на урацил (У) и вместо дезоксирибозы использована просто рибоза, имеющая на один атом кислорода больше. Кроме того, РНК – одноцепочечная структура.



Природа создала три основных вида молекул РНК.





Молекулы, считывающие информацию с ДНК, называются информационными РНК (и-РНК). Такая молекула быстро соединяется с рибосомой, непродолжительное время работает как матрица (поэтому называется еще и матричной, или м-РНК), «износившись», разваливается, и на ее место встает новая молекула и-РНК. Этот процесс идет непрерывно на протяжении всей жизни клетки.

Молекулы РНК другого типа имеют гораздо меньшие размеры и разделены на 20 разновидностей в соответствии с количеством разных аминокислот, входящих в белки. Каждая молекула этого типа с помощью определенного фермента соединяется с одной из 20 аминокислот и доставляет ее к рибосоме, уже соединенной с и-РНК. Это – транспортная РНК (т-РНК).

Наконец, в рибосомах есть своя, рибосомная, РНК (р-РНК), не несущая генетической информации.

Функции:

Биосинтез белка.



Это интересно

Ученые выяснили, что каждая молекула тела использует особое излучение, самые сложные вибрации издает молекула ДНК. Внутренняя “музыка” сложна и разнообразна и, что самое удивительное, в ней четко прослеживаются определенные ритмы. Преобразованные компьютером в графическую картинку, они являют собой завораживающее зрелище. Можно следить за ними часами, месяцами, годами - все время “оркестр” будет исполнять вариации на знакомую тему. Играет он не для собственного удовольствия, а на благо организма: ритм, заданный ДНК и “подхваченный” белками и другими молекулами, лежит в основе всех биологических связей, составляет нечто вроде каркаса жизни; нарушение ритма влечет за собой старение и болезнь. У молодых этот ритм более энергичный, поэтому они любят слушать рок или джаз, с возрастом белковые молекулы теряют свой ритм, поэтому более взрослые люди любят слушать классику. Классическая музыка совпадает с ритмом ДНК (академик Российской академии В.Н.Шабалин изучал это явление).














































4. АТФ – строение и функции.



Аденозинтрифосфорная кислота. Универсальный биологический аккумулятор энергии. Высококалорийное клеточное «топливо». Содержит 2 макроэргические связи . Макроэргическими называются соединения, в химических связях которых запасена энергия в форме, доступной для использования в биологических процессах.


АТФ (нуклеотид) состоит:



азотистое основание

углевод


3 молекулы Н3РО4







1) АТФ + Н2О —► АДФ + Ф + Е (40 к Дж/ моль)

2) АДФ + Н2О —► АМФ + Ф + Е (40 к Дж/ моль)

Энергетическая эффективность двух макроэргических связей состав­ляет 80 к Дж/моль. АТФ образуется в митохондриях клеток животных и хлоропластах растений Энергия АТФ используется на движение, биосин­тез, деление и др. Средняя продолжительность жизни 1 молекулы АТФ менее 1 мин, т.к. она расщепляется и восстанавливается 2400 раз в сутки.


5. Доклады студентов. Приложение №4.


6. Закрепление нового материала:






-оценка работы студента,

-замечания.


7. Домашнее задание.


-параграф учебника,


-составить кроссворд на тему: «Нуклеиновые кислоты».






















Фронтальный опрос:


- Объясните, что такое нуклеиновые кислоты?

- Какие виды НК вы знаете?

- Являются ли НК полимерами?

- Каков состав нуклеотида ДНК?

- Каков состав нуклеотида РНК?

- В чем сходство и различие между нуклеидами РНК и ДНК?

- АТФ - постоянный источник энергии для клетки. Его роль можно сравнить с ролью аккумулятора. Объясните, в чем заключается это сходство.

- Какое строение имеет АТФ?




Решить задачу:

Одна из цепей фрагмента молекулы ДНК имеет следующее строение:

Г- Г-Г-А -Т-А-А-Ц-А-Г-А-Т

а) Укажите строение противоположной цепи

б) Укажите последовательность нуклеотидов в молекуле и - РНК, по­строенной на этом участке цепи ДНК.


Тест
(Отвечая на вопросы теста, и выбрав правильный ответ, вы получите ключевое слово)

  1. Какой из нуклеотидов не входит в состав ДНК?

а. тимин

н. урацил

п. гуанин

г. цитозин

е. аденин

  1. Если нуклеотидный состав ДНК - АТТ-ГЦГ-ТАТ -, то каким должен быть нуклеотидный состав и-РНК?

а. ТАА-ЦГЦ-УТА

к. ТАА-ГЦГ-УТУ

у. УАА-ЦГЦ-АУА

г. УАА-ЦГЦ-АТА

  1. В каком случае правильно указан состав нуклеотида ДНК?

а. рибоза, остаток фосфорной кислоты, тимин

и. фосфорная кислота, урацил, дезоксирибоза

к. остаток фосфорной кислоты, дезоксирибоза, аденин

г. остаток фосфорной кислоты, рибоза, гуанин

  1. Какую из функций выполняет и-РНК?

а. перенос аминокислот на рибосомы

л. снятие и перенос информации с ДНК

в. формирование рибосом

т. все перечисленные функции

  1. Мономерами ДНК и РНК являются?

б. азотистое основание

у. дезоксирибоза и рибоза

л. азотистое основание и фосфорная кислота

е. нуклеотиды

  1. В каком случае правильно названы все отличия и -РНК от ДНК?

ш. одноцепочная, содержит дезоксирибозу, хранение информации

ю. двуцепочечная, содержит рибозу, передает информацию

о. одноцепочная, содержит рибозу, передает информацию

г. двуцепочная, содержит дезокирибозу, хранит информацию

  1. Прочная ковалентная связь в молекуле ДНК возникает между:

в. нуклеотидами

и. дезоксирибозами соседних нуклеотидов

т. остатками фосфорной кислоты и сахара соседних нуклеотидов

  1. Какая из молекул РНК самая длинная?

а. т-РНК

к. р-РНК

и. и-РНК

  1. В реакцию с аминокислотами вступает:

д. т-РНК

б. р-РНК

а. и-РНК

г. ДНК

(Ключевое слово - нуклеотид).





















Дать понятия терминам:


Нуклеиновые кислоты --

Азотистые основания –

Комплементарность –

Цианокобаламин –

Адреналин –

Рибофлавин –

Гормоны –

Цитозин –

Тимин –

Урацил -

РНК –

ДНК -



















Доклады студентов. 1. Что такое гормоны.

Гормоны - биологически активные вещества, вырабатываемые в организме специализированными клетками или органами - железами внутренней секреции и оказывающие целенаправленное воздействие на деятельность других клеток.

Гормоны обладают высокой и специфической биологической активностью, т. е. действуют в очень малых количествах - менее одной миллионной грамма и только на клетки, имеющие специализированные воспринимающие участки - рецепторы, разные для разных гормонов. Эти вещества обладают дистантным действием, т. е. могут действовать на клетки, расположенные в отдалении от места образования гормонов.

Клетки, вырабатывающие гормоны, могут образовывать специальные органы - железы внутренней секреции, или эндокринные. Но могут располагаться и в других органах, выполняющих в организме не только эндокринные функции (поджелудочная железа, кишечник и др.). Железы внутренней секреции выделяют свои продукты непосредственно в кровь. Обычно каждая железа вырабатывает не один, а несколько гормонов. Объясняется это не только тем, что в ней присутствуют эндокринные клетки разных типов, но и тем, что в кровь могут выделяться промежуточные продукты синтеза и метаболизма гормонов, которые обладают собственной биологической активностью. Например, гипофиз состоит из множества различных клеток, продуцирующих разные гормоны, а щитовидная железа выделяет в кровь не только гормон тироксин, но и трийодтиронин (образующиеся в клетках одного типа).

По своей химической природе гормоны могут быть пептидами, белками, производными холестерина (стероиды) или аминокислот. К первой группе относятся гормоны гипоталамуса, гипофиза, поджелудочной железы и др. Стероидные гормоны вырабатываются клетками коркового слоя надпочечников и половых желёз. Мозговой слой надпочечников и основная масса клеток щитовидной железы выделяют гормоны - производные аминокислоты тирозина.

К гормонам причисляют ряд соединений, вырабатываемых практически всеми клетками организма, но оказывающих как местное, так и дистантное действие, в частности простагландины - производные высших ненасыщенных жирных кислот. В состав многих гормонов входят остатки углеводов, металлы, микроэлементы (например, йод, цинк).

2. Функции гормонов.

Гормоны выполняют в организме разнообразные и очень важные функции. Так, гормон роста регулирует размеры тела. При его недостатке человек становится карликом, а при избытке, наоборот, развивается гигантизм, когда рост человека может превышать 2,5 м. Гормоны щитовидной железы необходимы для развития организма. При их отсутствии головастик, например, не может превратиться в лягушку, а у человека плохо развивается головной мозг и возникает кретинизм. При недостатке или избытке гормонов возникают тяжелые заболевания: сахарная болезнь (диабет)' - при недостатке Гормона поджелудочной железы инсулина; базедова болезнь - при избытке гормонов щитовидной железы и др.; преждевременное половое созревание или появление черт, свойственных противоположному полу, - при избытке или нарушении соотношения гормонов мужских и женских половых желёз.

Большинство известных гормонов получено в чистом виде и искусственно синтезировано в лабораториях. Многие белковые гормоны (инсулин, гормон роста) теперь получают не только из животного сырья или путем химического синтеза, но и методами генной инженерии. Это открывает новые источники получения гормонов и дает возможность выяснить их разностороннее влияние на клетки, что важно для применения этих веществ в. медицине и сельском хозяйстве (например, для повышения продуктивности животноводства).

3. Основные гормоны человека.

Гормоны гипофиза подробно описаны в статье ГИПОФИЗ. Здесь мы лишь перечислим основные продукты гипофизарной секреции.

Гормоны передней доли гипофиза. Железистая ткань передней доли продуцирует:

– гормон роста (ГР), или соматотропин, который воздействует на все ткани организма, повышая их анаболическую активность (т.е. процессы синтеза компонентов тканей организма и увеличения энергетических запасов).

– меланоцит-стимулирующий гормон (МСГ), усиливающий выработку пигмента некоторыми клетками кожи (меланоцитами и меланофорами);

– тиреотропный гормон (ТТГ), стимулирующий синтез тиреоидных гормонов в щитовидной железе;

– фолликулостимулирующий гормон (ФСГ) и лютеинизирующий гормон (ЛГ), относящиеся к гонадотропинам: их действие направлено на половые железы .

– пролактин, обозначаемый иногда как ПРЛ, – гормон, стимулирующий формирование молочных желез и лактацию.

Гормоны задней доли гипофиза – вазопрессин и окситоцин. Оба гормона продуцируются в гипоталамусе, но сохраняются и высвобождаются в задней доле гипофиза, лежащей книзу от гипоталамуса. Вазопрессин поддерживает тонус кровеносных сосудов и является антидиуретическим гормоном, влияющим на водный обмен. Окситоцин вызывает сокращение матки и обладает свойством «отпускать» молоко после родов.

Тиреоидные и паратиреоидные гормоны. Щитовидная железа расположена на шее и состоит из двух долей, соединенных узким перешейком . Четыре паращитовидных железы обычно расположены парами – на задней и боковой поверхности каждой доли щитовидной железы, хотя иногда одна или две могут быть несколько смещены.

Главными гормонами, секретируемыми нормальной щитовидной железой, являются тироксин (Т4) и трийодтиронин (Т3). Попадая в кровоток, они связываются – прочно, но обратимо – со специфическими белками плазмы. Т4 связывается сильнее, чем Т3, и не так быстро высвобождается, а потому он действует медленнее, но продолжительнее. Тиреоидные гормоны стимулируют белковый синтез и распад питательных веществ с высвобождением тепла и энергии, что проявляется повышенным потреблением кислорода. Эти гормоны влияют также на метаболизм углеводов и, наряду с другими гормонами, регулируют скорость мобилизации свободных жирных кислот из жировой ткани. Короче говоря, тиреоидные гормоны оказывают стимулирующее действие на обменные процессы. Повышенная продукция тиреоидных гормонов вызывает тиреотоксикоз, а при их недостаточности возникает гипотиреоз, или микседема.

Другим соединением, найденным в щитовидной железе, является длительно действующий тиреоидный стимулятор. Он представляет собой гамма-глобулин и, вероятно, вызывает гипертиреоидное состояние.

Гормон паращитовидных желез называют паратиреоидным, или паратгормоном; он поддерживает постоянство уровня кальция в крови: при его снижении паратгормон высвобождается и активирует переход кальция из костей в кровь до тех пор, пока содержание кальция в крови не вернется к норме. Другой гормон – кальцитонин – оказывает противоположное действие и выделяется при повышенном уровне кальция в крови. Раньше полагали, что кальцитонин секретируется паращитовидными железами, теперь же показано, что он вырабатывается в щитовидной железе. Повышенная продукция паратгормона вызывает заболевание костей, камни в почках, обызвествление почечных канальцев, причем возможно сочетание этих нарушений. Недостаточность паратгормона сопровождается значительным снижением уровня кальция в крови и проявляется повышенной нервно-мышечной возбудимостью, спазмами и судорогами.

Гормоны надпочечников. Надпочечники – небольшие образования, расположенные над каждой почкой. Они состоят из внешнего слоя, называемого корой, и внутренней части – мозгового слоя. Обе части имеют свои собственные функции, а у некоторых низших животных это совершенно раздельные структуры. Каждая из двух частей надпочечников играет важную роль как в нормальном состоянии, так и при заболеваниях. Например, один из гормонов мозгового слоя – адреналин – необходим для выживания, так как обеспечивает реакцию на внезапную опасность. При ее возникновении адреналин выбрасывается в кровь и мобилизует запасы углеводов для быстрого высвобождения энергии, увеличивает мышечную силу, вызывает расширение зрачков и сужение периферических кровеносных сосудов. Таким образом, направляются резервные силы для «бегства или борьбы», а кроме того снижаются кровопотери благодаря сужению сосудов и быстрому свертыванию крови. Адреналин стимулирует также секрецию АКТГ (т.е. гипоталамо-гипофизарную ось). АКТГ, в свою очередь, стимулирует выброс корой надпочечников кортизола, в результате чего увеличивается превращение белков в глюкозу, необходимую для восполнения в печени и мышцах запасов гликогена, использованных при реакции тревоги.

Кора надпочечников секретирует три основные группы гормонов: минералокортикоиды, глюкокортикоиды и половые стероиды (андрогены и эстрогены). Минералокортикоиды – это альдостерон и дезоксикортикостерон. Их действие связано преимущественно с поддержанием солевого баланса. Глюкокортикоиды влияют на обмен углеводов, белков, жиров, а также на иммунологические защитные механизмы. Наиболее важные из глюкокортикоидов – кортизол и кортикостерон. Половые стероиды, играющие вспомогательную роль, подобны тем, что синтезируются в гонадах; это 4-андростендион, дегидроэпиандростерон идегидроэпиандростерон сульфат, некоторые эстрогены.

Избыток кортизола приводит к серьезному нарушению метаболизма, вызывая гиперглюконеогенез, т.е. чрезмерное превращение белков в углеводы. Это состояние, известное как синдром Кушинга, характеризуется потерей мышечной массы, сниженной углеводной толерантностью, т.е. сниженным поступление глюкозы из крови в ткани (что проявляется аномальным увеличением концентрации сахара в крови при его поступлении с пищей), а также деминерализацией костей.

Избыточная секреция андрогенов опухолями надпочечника приводит к маскулинизации. Опухоли надпочечника могут вырабатывать также эстрогены, особенно у мужчин, приводя к феминизации.

Гипофункция (сниженная активность) надпочечников встречается в острой или хронической форме. Причиной гипофункции бывает тяжелая, быстро развивающаяся бактериальная инфекция: она может повредить надпочечник и привести к глубокому шоку. В хронической форме болезнь развивается вследствие частичного разрушения надпочечника (например, растущей опухолью или туберкулезным процессом) либо продукции аутоантител. Это состояние, известное как аддисонова болезнь, характеризуется сильной слабостью, похуданием, низким кровяным давлением, желудочно-кишечными расстройствами, повышенной потребностью в соли и пигментацией кожи. Аддисонова болезнь, описанная в 1855 Т.Аддисоном, стала первым распознанным эндокринным заболеванием.

Адреналин и норадреналин – два основных гормона, секретируемых мозговым слоем надпочечников. Адреналин считается метаболическим гормоном из-за его влияния на углеводные запасы и мобилизацию жиров. Норадреналин – вазоконстриктор, т.е. он сужает кровеносные сосуды и повышает кровяное давление. Мозговой слой надпочечников тесно связан с нервной системой; так, норадреналин высвобождается симпатическими нервами и действует как нейрогормон.

Избыточная секреция гормонов мозгового слоя надпочечников (медуллярных гормонов) возникает при некоторых опухолях. Симптомы зависят от того, какой из двух гормонов, адреналин или норадреналин, образуется в большем количестве, но чаще всего наблюдаются внезапные приступы приливов, потливости, тревоги, сердцебиения, а также головная боль и артериальная гипертония.

Тестикулярные гормоны. Семенники (яички) имеют две части, являясь железами и внешней, и внутренней секреции. Как железы внешней секреции они вырабатывают сперму, а эндокринную функцию осуществляют содержащиеся в них клетки Лейдига, которые секретируют мужские половые гормоны 4-андростендион и тестостерон, основной(андрогены), в частности мужской гормон. Клетки Лейдига вырабатывают также небольшое количество эстрогена (эстрадиола).

Семенники находятся под контролем гонадотропинов (см. выше раздел ГОРМОНЫ ГИПОФИЗА). Гонадотропин ФСГ стимулирует образование спермы (сперматогенез). Под влиянием другого гонадотропина, ЛГ, клетки Лейдига выделяют тестостерон. Сперматогенез происходит только при достаточном количестве андрогенов. Андрогены, в частности тестостерон, ответственны за развитие вторичных половых признаков у мужчин.

Нарушение эндокринной функции семенников сводится в большинстве случаев к недостаточной секреции андрогенов. Например, гипогонадизм – это снижение функции семенников, включая секрецию тестостерона, сперматогенез или и то, и другое. Причиной гипогонадизма может быть заболевание семенников, либо – опосредованно – функциональная недостаточность гипофиза.

Повышенная секреция андрогенов встречается при опухолях клеток Лейдига и приводит к чрезмерному развитию мужских половых признаков, особенно у подростков. Иногда опухоли семенников вырабатывают эстрогены, вызывая феминизацию. В случае редкой опухоли семенников – хориокарциномы – продуцируется столько хорионических гонадотропинов, что анализ минимального количества мочи или сыворотки дает те же результаты, что и при беременности у женщин. Развитие хориокарциномы может привести к феминизации.

Гормоны яичников. Яичники имеют две функции: развитие яйцеклеток и секреция гормонов . Гормоны яичников – это эстрогены, 4-андростендион. Эстрогены определяют развитие женскихпрогестерон и вторичных половых признаков. Эстроген яичников, эстрадиол, вырабатывается в клетках растущего фолликула – мешочка, который окружает развивающуюся яйцеклетку. В результате действия как ФСГ, так и ЛГ, фолликул созревает и разрывается, высвобождая яйцеклетку. Разорванный фолликул превращается затем в т.н. желтое тело, которое секретирует как эстрадиол, так и прогестерон. Эти гормоны, действуя совместно, готовят слизистую матки (эндометрий) к имплантации оплодотворенной яйцеклетки. Если оплодотворения не произошло, желтое тело подвергается регрессии; при этом прекращается секреция эстрадиола и прогестерона, а эндометрий отслаивается, вызывая менструацию.

Хотя яичники содержат много незрелых фолликулов, во время каждого менструального цикла созревает обычно только один из них, высвобождающий яйцеклетку. Избыток фолликулов подвергается обратному развитию на протяжении всего репродуктивного периода жизни женщины. Дегенерирующие фолликулы и остатки желтого тела становятся частью стромы – поддерживающей ткани яичника. При определенных обстоятельствах специфические клетки стромы активируются и секретируют 4-андростендион.предшественник активных андрогенных гормонов – Активация стромы возникает, например, при поликистозе яичников – болезни, связанной с нарушением овуляции. В результате такой активации продуцируется избыток андрогенов, что может вызвать гирсутизм (резко выраженную волосатость).

Пониженная секреция эстрадиола имеет место при недоразвитии яичников. Функция яичников снижается и в менопаузе, так как запас фолликулов истощается и как следствие падает секреция эстрадиола, что сопровождается целым рядом симптомов, наиболее характерным из которых являются приливы. Избыточная продукция эстрогенов обычно связана с опухолями яичников. Наибольшее число менструальных расстройств вызвано дисбалансом гормонов яичников и нарушением овуляции.

Гормоны плаценты человека. Плацента – пористая мембрана, которая соединяет эмбрион (плод) со стенкой материнской матки. Она секретирует хорионический гонадотропин и плацентарный лактоген человека. Подобно яичникам плацента продуцирует прогестерон и ряд эстрогенов.

Хорионический гонадотропин (ХГ). Имплантации оплодотворенной яйцеклетки способствуют материнские гормоны – эстрадиол и прогестерон. На седьмой день после оплодотворения человеческий зародыш укрепляется в эндометрии и получает питание от материнских тканей и из кровотока. Отслоение эндометрия, которое вызывает менструацию, не происходит, потому что эмбрион секретирует ХГ, благодаря которому сохраняется желтое тело: вырабатываемые им эстрадиол и прогестерон поддерживают целость эндометрия. После имплантации зародыша начинает развиваться плацента, продолжающая секретировать ХГ, который достигает наибольшей концентрации примерно на втором месяце беременности. Определение концентрации ХГ в крови и моче лежит в основе тестов на беременность.

Плацентарный лактоген человека (ПЛ). В 1962 ПЛ был обнаружен в высокой концентрации в ткани плаценты, в оттекающей от плаценты крови и в сыворотке материнской периферической крови. ПЛ оказался сходным, но не идентичным с гормоном роста человека. Это мощный метаболический гормон. Воздействуя на углеводный и жировой обмен, он способствует сохранению глюкозы и азотсодержащих соединений в организме матери и тем самым обеспечивает снабжение плода достаточным количеством питательных веществ; одновременно он вызывает мобилизацию свободных жирных кислот – источника энергии материнского организма.

Прогестерон. Во время беременности в крови (и моче) женщины постепенно возрастает уровень прегнандиола, метаболита прогестерона. Прогестерон секретируется главным образом плацентой, а основным его предшественником служит холестерин из крови матери. Синтез прогестерона не зависит от предшественников, продуцируемых плодом, судя по тому, что он практически не снижается через несколько недель после смерти зародыша; синтез прогестерона продолжается также в тех случаях, когда у пациенток с брюшной внематочной беременностью произведено удаление плода, но сохранилась плацента.

Эстрогены. Первые сообщения о высоком уровне эстрогенов в моче беременных появились в 1927, и вскоре стало ясно, что такой уровень поддерживается только при наличии живого плода. Позже было выявлено, что при аномалии плода, связанной с нарушением развития надпочечников, содержание эстрогенов в моче матери значительно снижено. Это позволило предположить, что гормоны коры надпочечников плода служат предшественниками эстрогенов. Дальнейшие исследования показали, что дегидроэпиандростерон сульфат, присутствующий в плазме крови плода, является основным предшественником таких эстрогенов, как эстрон и эстрадиол, а 16-гидроксидегидроэпиандростерон, также эмбрионального происхождения, – основной предшественник еще одного продуцируемого плацентой эстрогена, эстриола. Таким образом, нормальное выделение эстрогенов с мочой при беременности определяется двумя условиями: надпочечники плода должны синтезировать предшественники в нужном количестве, а плацента – превращать их в эстрогены.

Гормоны поджелудочной железы. Поджелудочная железа осуществляет как внутреннюю, так и внешнюю секрецию. Экзокринный (относящийся к внешней секреции) компонент – это пищеварительные ферменты, которые в форме неактивных предшественников поступают в двенадцатиперстную кишку через проток поджелудочной железы. Внутреннюю секрецию обеспечивают островки Лангерганса, представленные клетками нескольких типов: альфа-клетки секретируют гормон глюкагон, бета-клетки – инсулин. Основное действие инсулина заключается в понижении уровня глюкозы в крови, осуществляемое главным образом тремя способами: 1) торможением образования глюкозы в печени; 2) торможением в печени и мышцах распада гликогена (полимера глюкозы, который организм при необходимости может превращать в глюкозу); 3) стимуляцией использования глюкозы тканями. Недостаточная секреция инсулина или повышенная его нейтрализация аутоантителами приводят к высокому уровню глюкозы в крови и развитию сахарного диабета. Главное действие глюкагона – увеличение уровня глюкозы в крови за счет стимулирования ее продукции в печени. Хотя поддержание физиологического уровня глюкозы в крови обеспечивают в первую очередь инсулин и глюкагон, другие гормоны – гормон роста, кортизол и адреналин – также играют существенную роль.

Желудочно-кишечные гормоны. Гормоны желудочно-кишечного тракта – гастрин, холецистокинин, секретин и панкреозимин. Это полипептиды, секретируемые слизистой оболочкой желудочно-кишечного тракта в ответ на специфическую стимуляцию. Полагают, что гастрин стимулирует секрецию соляной кислоты; холецистокинин контролирует опорожнение желчного пузыря, а секретин и панкреозимин регулируют выделение сока поджелудочной железы.

Нейрогормоны – группа химических соединений, секретируемых нервными клетками (нейронами). Эти соединения обладают гормоноподобными свойствами, стимулируя или подавляя активность других клеток; они включают упомянутые ранее рилизинг-факторы, а также нейромедиаторы, функции которых заключается в передаче нервных импульсов через узкую синаптическую щель, отделяющую одну нервную клетку от другой. К нейромедиаторам относятся дофамин, адреналин, норадреналин, серотонин, гистамин, ацетилхолин и гамма-аминомасляная кислота.

В середине 1970-х годов был открыт ряд новых нейромедиаторов, обладающих морфиноподобным обезболивающим действием; они получили название «эндорфины», т.е. «внутренние морфины». Эндорфины способны связываться со специальными рецепторами в структурах головного мозга; в результате такого связывания в спинной мозг посылаются импульсы, которые блокируют проведение поступающих болевых сигналов. Болеутоляющее действие морфина и других опиатов несомненно обусловлено их сходством с эндорфинами, обеспечивающим их связывание с теми же блокирующими боль рецепторами.

4. Терапевтическое использование гормонов.

Гормоны использовались первоначально в случаях недостаточности какой-либо из желез внутренней секреции для замещения или восполнения возникшего гормонального дефицита. Первым эффективным гормональным препаратом был экстракт щитовидной железы овцы, примененный в 1891 английским врачом Г.Марри для лечения микседемы. На сегодняшний день гормональная терапия способна восполнить недостаточную секрецию практически любой эндокринной железы; прекрасные результаты дает и заместительная терапия, проводимая после удаления той или иной железы. Гормоны могут использоваться также для стимуляции работы желез. Гонадотропины, например, применяют для стимуляции половых желез, в частности для индукции овуляции.

Кроме заместительной терапии, гормоны и гормоноподобные препараты используются и для других целей. Так, избыточную секрецию андрогена надпочечниками при некоторых заболеваниях подавляют кортизоноподобными препаратами. Другой пример – использование эстрогенов и прогестерона в противозачаточных таблетках для подавления овуляции.

Гормоны могут применяться и как агенты, нейтрализующие действие других медикаментозных средств; при этом исходят из того, что, например, глюкокортикоиды стимулируют катаболические процессы, а андрогены – анаболические. Поэтому на фоне длительного курса глюкокортикоидной терапии (скажем, в случае ревматоидного артрита) нередко дополнительно назначают анаболические средства для снижения или нейтрализации ее катаболического действия.

Часто гормоны применяют как специфические лекарственные средства. Так, адреналин, расслабляющий гладкие мышцы, очень эффективен в случаях приступа бронхиальной астмы. Гормоны используются и в диагностических целях. Например, при исследовании функции коры надпочечников прибегают к ее стимуляции, вводя пациенту АКТГ, а ответ оценивают по содержанию кортикостероидов в моче или плазме.

В настоящее время препараты гормонов начали применяться почти во всех областях медицины. Гастроэнтерологи используют кортизоноподобные гормоны при лечении регионарного энтерита или слизистого колита. Дерматологи лечат угри эстрогенами, а некоторые кожные болезни – глюкокортикоидами; аллергологи применяют АКТГ и глюкокортикоиды при лечении астмы, крапивницы и других аллергических заболеваний. Педиатры прибегают к анаболическим веществам, когда необходимо улучшить аппетит или ускорить рост ребенка, а также к большим дозам эстрогенов, чтобы закрыть эпифизы (растущие части костей) и предотвратить таким образом чрезмерный рост.

При трансплантации органов используют глюкокортикоиды, которые уменьшают шансы отторжения трансплантата. Эстрогены могут ограничивать распространение метастазирующего рака молочной железы у больных в период после менопаузы, а андрогены применяются с той же целью до менопаузы. Урологи используют эстрогены, чтобы затормозить распространение рака предстательной железы. Специалисты по внутренним болезням обнаружили, что целесообразно использовать кортизоноподобные соединения при лечении некоторых типов коллагенозов, а гинекологи и акушеры применяют гормоны при терапии многих нарушений, прямо не связанных с гормональным дефицитом.



5. Витамины

Если заглянуть в книги, изданные в конце прошлого столетия, можно убедиться, что в то время наука о рациональном питании предусматривала включение в рацион белков, жиров, углеводов, минеральных солей и воды. Считалось, что пища, содержащая эти вещества, полностью удовлетворяет все потребности организма, и таким образом, вопрос о рациональном питании казался разрешенным. Однако наука XIX столетия находилась в противоречии многовековой практикой. Жизненный опыт населения различных стран показывал, что существует ряд болезней, связанных с питанием и встречающихся часто среди людей, в пище которых не отмечалось недостатка белков, жиров, углеводов и минеральных солей.

Врачи-практики давно предполагали, что существует прямая связь между возникновением некоторых болезней (например, цинги, рахита, бери-бери, пеллагры) и характером питания. Что же привело к открытию витаминов - этих веществ, обладающих чудесными свойствами предупреждать и излечивать тяжелые болезни качественной пищевой недостаточности?

Начало изучения витаминов было положено русским врачом Н.И.Луниным, который еще в 1888 г. установил, что для нормального роста и развития животного организма, кроме белков, жиров, углеводов, воды и минеральных веществ, необходимы еще какие-то, пока неизвестные науке вещества, отсутствие которых приводит организм к гибели.

Доказательство существования витаминов завершилось работой польского учёного Казимира Функа, который в 1912 г. выделил из рисовых отрубей вещество, излечивающее паралич голубей, питавшихся только полированным рисом (бери-бери - так называли это заболевание у людей стран Юго-Восточной Азии, где население питается преимущественно одним рисом). Химический анализ выделенного К.Функом вещества показал, что в его состав входит азот. Открытое им вещество Функ назвал витамином (от слов «вита» - жизнь и «амин» - содержащий азот).

Правда, потом оказалось, что не все витамины содержат азот, но старое название этих веществ осталось. В наши дни принято обозначать витамины их химическими названиями: ретинол, тиамин, аскорбиновая кислота, никотинамид, - соответственно А, В, С, РР.

6. Понятие и основные признаки витаминов

С точки зрения химии, витамины - это группа низкомолекулярных веществ различной химической природы, обладающих выраженной биологической активностью и необходимых для роста, развития и размножения организма.

Витамины образуются путем биосинтеза в растительных клетках и тканях. Обычно в растениях они находятся не в активной, но высокоорганизованной форме, которая, по данным исследований, наиболее подходит человеческому организму, а именно - в виде провитаминов. Их роль сводится к полному, экономичному и правильному использованию основных питательных веществ, при котором органические вещества пищи высвобождают необходимую энергию.

Только немногие из витаминов, такие, как A, D, Е, В12, могут накапливаться в организме. Недостаток витаминов вызывает тяжелые расстройства.

Основные признаки витаминов:

- содержатся в пище в незначительных количествах (микро-компоненты);

- либо не синтезируются в организме вообще, либо синтезируются в незначительных количествах микрофлорой кишечника;

- не выполняют пластических функций;

- не являются источниками энергии;

- являются кофакторами многих ферментативных систем;

- оказывают биологическое действие в малых концентрациях и влияют на все обменные процессы в организме, требуются организму в очень небольших количествах: от нескольких мкг до нескольких мг в день.

Известны разные степени необеспеченности организма витаминами:

авитаминозы - полное истощение запасов витаминов;

гиповитаминозы - резкое снижение обеспеченности тем или иным витамином;

гипервитаминозы - избыток витаминов в организме.

Вредны все крайности: как недостаток, так и избыток витаминов, так как при избыточном потреблении витаминов развивается отравление (интоксикация). Явление гипервитаминоза касается лишь витаминов А и D, избыточное количество большинства других витаминов быстро выводится из организма с мочой. Но есть еще так называемая субнормальная обеспеченность, которая связана с дефицитом витаминов и проявляется она в нарушении обменных процессов в органах и тканях, но без явных клинических признаков (например, без видимых изменений в состоянии кожи, волос и других внешних проявлений). Если такая ситуация регулярно повторяется по разным причинам, то это может привести гипо- или авитаминозу


7. Обеспечение организма витаминами

При нормальном питании суточная потребность организма в витаминах удовлетворяется полностью. Недостаточное, неполноценное питание или нарушение процессов усвоения и использования витаминов могут быть причиной различных форм витаминной недостаточности.

Причины истощения запасов витаминов в организме:

1) Качество продуктов и их приготовление:

- несоблюдение условий хранения по времени и температуре;

- нерациональная кулинарная обработка (например, длительная варка мелко нарезанных овощей);

- присутствие антивитаминных факторов в продуктах питания (капуста, тыква, петрушка, зеленый лук, яблоки содержат ряд ферментов, разрушающих витамин С, особенно при мелкой резке)

- разрушение витаминов под влиянием ультрафиолетовых лучей, кислорода воздуха (например, витамина А).

2) Важная роль в обеспечении организма рядом витаминов принадлежит микрофлоре пищеварительного тракта:

- при многих распространенных хронических заболеваниях нарушается всасывание или усвоение витаминов;

- сильные кишечные расстройства, неправильный прием антибиотиков и сульфаниламидных препаратов приводят к созданию определенного дефицита витаминов, которые могут синтезироваться полезной микрофлорой кишечника (витамины В12, В6, Н (биотин)).

Суточная потребность в витаминах и их основные функции

Витамин

Суточная

потребность

Функции

Основные источники


Аскорбиновая кислота (С)

50-100 мг

Участвует в окислительно-восстановительных процессах, повышает сопротивляемость организма к экстремальным воздействиям

Овощи, фрукты, ягоды. В капусте - 50 мг. В шиповнике - 30-2000 мг.


Тиамин, аневрин (В1)

1,4-2,4 мг

Необходим для нормальной деятельности центральной и периферической нервной системы

Пшеничный и ржаной хлеб, крупы - овсяная, горох, свинина, дрожжи, кишечная микрофлора.


Рибофлавин (В2)

1,5-3,0 мг

Участвует в окислительно-восстановительных реакциях

Молоко, творог, сыр, яйцо, хлеб, печень, овощи, фрукты, дрожжи.


Пиридоксин (В6)

2,0-2,2 мг

Участвует в синтезе и метаболизме аминокислот, жирных кислот и ненасыщенных липидов

Рыба, фасоль, пшено, картофель


Никотиновая кислота (РР)

15,0-25,0 мг

Участвует в окислительно-восстановительных реакциях в клетках. Недостаточность вызывает пеллагру

Печень, почки, говядина, свинина, баранина, рыба, хлеб, крупы, дрожжи, кишечная микрофлора


Фолиевая кислота, фолицин (Вс)

0,2-0,5 мг

Кроветворный фактор, участвует в синтезе аминокислот, нуклеиновых кислот

Петрушка, салат, шпинат, творог, хлеб, печень


Цианкобаламин ( В12)

2-5 мг

Участвует в биосинтезе нуклеиновых кислот, фактор кроветворения

Печень, почки, рыба, говядина, молоко, сыр


Биотин (Н)

0,1-0,3 мг

Участвует в реакциях обмена аминокислот, липидов, углеводов, нуклеиновых кислот

Овсяная крупа, горох, яйцо, молоко, мясо, печень


Пантотеновая кислота (В3)

5-10 мг

Участвует в реакциях обмена белков, липидов, углеводов

Печень, почки, гречка, рис, овес, яйца, дрожжи, горох, молоко, кишечная микрофлора


Ретинол (А)

0,5-2.5 мг

Участвует в деятельности мембран клеток. Необходим для роста и развития человека, для функционирования слизистых оболочек. Участвует в процессе фоторецепции - восприятии света

Рыбий жир, печень трески, молоко, яйца, сливочное масло


Кальциферол (D)

2,5-10 мкг

Регуляция содержания кальция и фосфора в крови, минерализация костей, зубов

Рыбий жир, печень, молоко, яйца







В настоящее время известны около 13 витаминов, которые вместе с белками, жирами и углеводами должны присутствовать в рационе людей и животных для обеспечения нормальной жизнедеятельности витаминов. Кроме того, существует группа витаминоподобных веществ, которые обладают всеми свойствами витаминов, но не являются строго обязательными компонентами пищи.

Соединения, которые не являются витаминами, но могут служить предшественниками их образования в организме, называются провитаминами. К ним относятся, например, каротины, расщепляющиеся в организме с образованием витамина А, некоторые стерины (эргостерин, 7-дегидрохолестерин и др.), превращающиеся в витамин D.

Ряд витаминов представлен не одним, а несколькими соединениями, обладающими сходной биологической активностью (витамеры), например витамин В6 включает пиридоксин, пиридоксаль и пиридоксамин. Для обозначения подобных групп родственные соединения используют слово «витамин» с буквенными обозначениями (витамин А, витамин Е и т.п.).

Для индивидуальных соединений, обладающих витаминной активностью, используются рациональные названия, отражающие их химическую природу, например ретиналь (альдегидная форма витамина А), эргокальциферол и холекалыдиферол (формы витамина D).

Таким образом, наряду с жирами, белками, углеводами и минеральными солями, необходимый комплекс для поддержания жизнедеятельности человека включает пятый, равноценный по своей значимости компонент - витамины. Витамины принимают самое непосредственное и активное участие во всех обменных процессах жизнедеятельности организма, а также входят в состав многих ферментов, выполняя роль катализаторов.

8. Классификация и номенклатура витаминов.

Так как к витаминам относится группа веществ различной химической природы, то классификация их по химическому строению сложна. Поэтому классификация проводится по растворимости в воде или органических растворителях. В соответствие с этим витамины делятся на водорастворимые и жирорастворимые.

1) К водорастворимым витаминам относят:

B1 (тиамин) антиневритный;

B2 (рибофлавин) антидерматитный;

B3 (пантотеновая кислота) антидерматитный;

B6 (пиридоксин, пиридоксаль, пиридоксамин) антидерматитный;

B9 (фолиевая кислота; фолацин) антианемический;

B12 (цианкобаламин) антианемический;

PP (никотиновая кислота; ниацин) антипеллагрический;

H (биотин) антидерматитный;

C (аскорбиновая кислота) антицинготный - участвуют в структуре и функционировании ферментов.

2) К жирорастворимым витаминам относят:

А (ретинол) антиксерофтальмический;

D (кальциферолы) антирахитический;

E (токоферолы) антистерильный;

К (нафтохинолы) антигеморрагический;

Жирорастворимые витамины входят в структуру мембранных систем, обеспечивая их оптимальное функциональное состояние.

В химическом отношении жирорастворимые витамины А, D, E и К относятся к изопреноидам.

3) следующая группа: витаминоподобные вещества. К ним обычно относят витамины: В13 (оротовая кислота), В15 (пангамовая кислота), В4 (холин), В8 (инозитол), Вт (карнитин), H1 (параминбензойная кислота), F (полинасыщенные жирные кислоты), U (S=метилметионин-сульфат-хлорид).

Номенклатура (название) основана на использовании заглавных букв латинского алфавита с нижним цифровым индексом. Кроме того, в названии используются наименования, отражающие химическую природу и функцию витамина.

Витамины стали известны человечеству не сразу, и в течение многих лет ученым удавалось открывать новые виды витаминов, а также новые свойства этих полезных для человеческого организма веществ. Поскольку языком медицины во всем мире является Латынь, то и витамины обозначались именно латинскими буквами, а в дальнейшем и цифрами.

Присвоение витаминам не только букв, но и цифр объясняется тем, что витамины приобретали новые свойства, обозначить которые при помощи цифр в названии витамина, представлялось наиболее простым и удобным. Для примера, можно рассмотреть популярный витамин «В». Так, на сегодняшний день, этот витамин может быть представлен в самых разных областях, и во избежание путаницы он именуется от «витамин В1» и вплоть до «витамина В14». Аналогично именуются и витамины входящие в эту группу, например, «витамины группы В».

Когда химическая структура витаминов была определена окончательно, стало возможным именовать витамины в соответствии с терминологией, принятой в современной химии. Так в обиход вошли такие названия, как пиридоксаль, рибофлавин, а также птероилглутаминовая кислота. Прошло еще какое то время, и стало совершенно ясно, что многие органические вещества, уже давным-давно известные науке, также обладают свойствами витаминов. Причем таких веществ оказалось достаточно много. Из наиболее распространенных можно упомянуть никотинамид, лгезоинозит, ксантоптерин, катехин, гесперетин, кверцетин, рутин, а также ряд кислот, в частности, никотиновую, арахидоновую, линоленовую, линолевую, и некоторые другие кислоты.

Далее более подробно рассмотрим сведения о биологической роли тех витаминов, механизм действия которых уже расшифрован.

Жирорастворимые витамины

Витамин А (ретинол) является предшественником группы «ретиноидов», к которой принадлежат ретиналь и ретиноевая кислота.

При недостатке витамина А развиваются ночная («куриная») слепота, ксерофтальмия (сухость роговой оболочки глаз), наблюдается нарушение роста.

Витамин D (кальциферол) при гидроксилировании в печени и почках образует гормон кальцитриол. Вместе с двумя другими гормонами (паратгормоном, или паратирином, и кальцитонином) кальцитриол принимает участие в регуляции метаболизма кальция. Кальциферол образуется из предшественника 7-дегидрохолестерина, присутствующего в коже человека и животных, при облучении ультрафиолетовым светом.

Если УФ-облучение кожи недостаточно или витамин D отсутствует в пищевых продуктах, развивается витаминная недостаточность и, как следствие, рахит у детей, остеомаляция (размягчение костей) у взрослых. В обоих случаях нарушается процесс минерализации (включения кальция) костной ткани.

Витамин К - общее название группы веществ, включающей филлохинон и родственные соединения с модифицированной боковой цепью. Недостаток витамина К наблюдается довольно редко, так как эти вещества вырабатываются микрофлорой кишечника. Витамин К принимает участие в карбоксилировании остатков глютаминовой кислоты белков плазмы крови, что важно для нормализации или ускорения процесса свертывания крови. Процесс ингибируется антагонистами витамина К (например, производными кумарина), что находит применение как один из методов лечения тромбозов.

Водорастворимые витамины

Витамин B1 (тиамин) построен из двух циклических систем -- пиримидина (шестичленный ароматический цикл с двумя атомами азота) и тиазола (пятичленный ароматический цикл, включающий атомы азота и серы), соединенных метиленовой группой.

Витамин B2 -- комплекс витаминов, включающий рибофлавин, фолиевую, никотиновую и пантотеновую кислоты.

Молекула фолиевой кислоты (витамин B9) Дефицит фолиевой кислоты встречается довольно часто. Первым признаком дефицита является нарушение эритропоэза (мегалобластическая анемия). При этом тормозятся синтез нуклеопротеидов и созревание клеток, появляются аномальные предшественники эритроцитов - мегалоциты. При остром недостатке фолиевой кислоты развивается генерализованное поражение тканей, связанное с нарушением синтеза липидов и обмена аминокислот.

В отличие от человека и животных микроорганизмы способны синтезировать фолиевую кислоту de novo. Потому рост микроорганизмов подавляется сульфаниламидными препаратами, которые как конкурентные ингибиторы блокируют включение 4-аминобензойной кислоты в биосинтез фолиевой кислоты. Сульфаниламидные препараты не могут оказывать воздействия на метаболизм животных организмов, поскольку они не способны синтезировать фолиевую кислоту.

Никотиновая кислота (ниацин) и никотинамид (ниацинамид) (оба известны как витамин РР) необходимы для биосинтеза двух коферментов -- никотинамидадениндинуклеотида [НАД+ (NAD+)] и никотинамидадениндинуклеотидфосфата [НАДФ+ (NADP+)]. Главная функция этих соединений, состоящая в переносе гидрид-ионов (восстановительных эквивалентов), обсуждается в разделе, посвященном метаболическим процессам. В животных организмах никотиновая кислота может синтезироваться из триптофана, однако биосинтез идет с низким выходом. Поэтому витаминный дефицит наступает лишь в том случае, если в рационе одновременно отсутствуют все три вещества: никотиновая кислота, никотинамид и триптофан. Заболевания, связанные с дефицитом ниацина, являются поражением кожи (пеллагра), расстройством желудка и депрессией.



Витамин В6 -- групповое название трех производных пиридина: пиридоксаля, пиридоксина и пиридоксамина. На схеме приведена формула иридоксаля, где в положении при С-4 стоит альдегидная группа (-СНО); в пиридоксине это место занимает спиртовая группа (-CH2OH); а в пиридоксамине -- метиламиногруппа (-CH2NН2). Активной формой витамина В6 является пиридоксаль-5-фосфат (PLP), важнейший кофермент в метаболизме аминокислот. Пиридоксальфосфат входит также в состав гликоген-фосфорилазы, принимающей участие в расщеплении гликогена. Дефицит витамина В6 встречается редко.

Витамин В12 (кобаламины; лекарственная форма -- цианокобаламин) - комплексное соединение, имеющее в основе цикл коррина и содержащее координационно связанный ион кобальта. Этот витамин синтезируется лишь в микроорганизмах. Из пищевых продуктов он содержится в печени, мясе, яйцах, молоке и полностью отсутствует в растительной пище (на заметку вегетарианцам!). Витамин всасывается слизистой желудка только в присутствии секретируемого (эндогенного) гликопротеина, так называемого внутреннего фактора. Назначение этого мукопротеида заключается в связывании цианокобаламина и тем самым в защите от деградации. В крови цианокобаламин также связывается специальным белком, транскобаламином. В организме витамин В12 запасается в печени.

Производные цианокобаламина являются коферментами, принимающими участие, например, в конверсии метилмалонил-КоА в сукцинил-КоА, биосинтезе метионина из гомоцистеина. Производные цианокобаламина принимают участие в восстановлении рибонуклеотидов бактериями до дезоксирибонуклеотидов.

Витаминный дефицит или нарушение всасывания витамина В12 связаны главным образом с прекращением секреции внутреннего фактора. Следствием авитаминоза является пернициозная анемия.

Витамин С (L-аскорбиновая кислота) Ежедневное поступление аскорбиновой кислоты необходимо человеку, приматам и морским свинкам, поскольку у этих видов отсутствует фермент гулонолактон-оксидаза (катализирующий последнюю стадию конверсии глюкозы в аскорбат.

Источником витамина С являются свежие фрукты и овощи. Аскорбиновую кислоту добавляют во многие напитки и пищевые продукты в качестве антиоксиданта и вкусовой добавки. Витамин С медленно разрушается в воде. Аскорбиновая кислота в качестве сильного восстановителя принимает участие во многих реакциях (главным образом в реакциях гидроксилирования).

Из биохимических процессов с участием аскорбиновой кислоты следует упомянуть синтез коллагена, деградацию тирозина, синтезы катехоламина и желчных кислот. Суточная потребность в аскорбиновой кислоте составляет 60 мг - величина, не характерная для витаминов. Сегодня дефицит витамина С встречается редко. Дефицит проявляется спустя несколько месяцев в форме цинги (скорбута). Следствием заболевания являются атрофия соединительных тканей, расстройство системы кроветворения, выпадение зубов.

Витамин H (биотин) содержится в печени, яичном желтке и других пищевых продуктах; кроме того, он синтезируется микрофлорой кишечника. В организме связан с ферментами, например с пируваткарбоксилазой, катализирующими реакцию карбоксилирования.






















Литература:

1.Основная:

  • «Общая биология» для 10-11 классов под редакцией академика Д.К. Беляева и профессора Г. М. Дымшица.


2. Дополнительная:

  • Биология поурочные планы по уебнику В.Б. Захарова, С.Г. Мамонтова, Н.И. Сонина 10 класс.

  • Биология в таблицах. 6-11 классы: Справочное пособие/ Авт.-сост. Т.А.Козлова, В.С.Кучменко. – 4-е изд.- М.: Дрофа, 2002.

  • Боднарук М.М. Биология дополнительные материалы к урокам по биологии и экологии в 10 – 11 классах.

  • «Общая биология10 – 11 класс» под редакцией В.Б. Захарова, С.Г. Мамонтова, Н.И. Сонина.

  • Пономарева И.Н., Соломин В.П. Общая методика обучения биологии.

  • Тейлор Д., Грин Н., Стаут У. Биология: В 3-х т. Т.1: Пер. с англ./Под ред. Р.Сопера – 3-е изд. – М.: Мир, 2001.

  • http://www.erudition.ru/referat/printref/id.33926_1.html - Эрудиция. Электронная российская библиотека.









Получите в подарок сайт учителя

Предмет: Биология

Категория: Уроки

Целевая аудитория: 11 класс

Автор: Лаврушина Любовь Леонидовна

Дата: 10.10.2015

Номер свидетельства: 238068


Получите в подарок сайт учителя

Видеоуроки для учителей

Курсы для учителей

ПОЛУЧИТЕ СВИДЕТЕЛЬСТВО МГНОВЕННО

Добавить свою работу

* Свидетельство о публикации выдается БЕСПЛАТНО, СРАЗУ же после добавления Вами Вашей работы на сайт

Удобный поиск материалов для учителей

Ваш личный кабинет
Проверка свидетельства