kopilkaurokov.ru - сайт для учителей

Создайте Ваш сайт учителя Курсы ПК и ППК Видеоуроки Олимпиады Вебинары для учителей

Реферат "Жизнь вне Земли"

Нажмите, чтобы узнать подробности

Изучение жизни во Вселенной — одна из сложнейших задач, с которой когда-либо встречалось человечество. Ведь речь идет о явлении, с которым людям, по существу, еще не приходилось непосредственно сталкиваться. Человек еще не побывал на других небесных телах, не видел ни одного внеземного живого организма. Все данные о жизни вне Земли, все без исключения, носят чисто гипотетический характер. На каждом этапе развития мирового сообщества ученые не только высказывали мысли о существовании внеземных форм жизни, но и пытались найти доказательства существования внеземных цивилизаций и установить с ними связь. В 1899 году знаменитый сербский изобретатель Н. Тесла опубликовал рассказ о необычных сигналах, полученных им во время опытов, позднее об этом же сообщил Г. Маркони.Основными атомами, входящими в состав тех молекулярных комплексов, из которых образовалось живое вещество, являются водород, кислород, азот и углерод. Роль последнего особенно важна. Углерод - четырёхвалентный элемент. Поэтому только углеродные соединения приводят к образованию длинных молекулярных цепей с богатыми и изменчивыми боковыми ответвлениями. Именно к такому типу принадлежат различные белковые молекулы.

Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Наладить дисциплину на своих уроках.
Получить возможность работать творчески.

Просмотр содержимого документа
«Реферат "Жизнь вне Земли" »



Муниципальное бюджетное общеобразовательное учреждение

«Вельжическая средняя общеобразовательная школа»








Реферат на тему:







Есть ли жизнь в космосе вне Земли?








Выполнила: ученица 10 класса Бацанова Кристина


Преподаватель: Косач Н.В.






2014 г.


Содержание.


Введение…………………………………………………………………....

  1. Из истории вопроса……………..……………………………………........

Основная часть…………………………………………………………...

1.Вероятность существования внеземных цивилизаций и необходимые условия для их возникновения……………………………………………….

  1. Возможные средства связи с инопланетянами…………………………...

  2. Методы обнаружения внеземной жизни………………………………….

  3. Астробиология……………………………………………………………....

  4. Определение «жизнь» и зарождения и развития жизни во Вселенной….

  5. Вода, как условие возникновения жизни…………………………………

  6. Возможные зоны жизни во Вселенной…………………………………….

  7. Поиски жизни в солнечной системе………………………………………..

а. Марс…………………………………………………………………………..

б. Спутник Юпитера – Европа………………………………………………...

в. Энцелад – шестой по размерам спутник Юпитера………………………..

г. Титан – спутник Сатурна……………………………………………………

д. Планета Венера……………………………………………………………...

е. Луна………………………………………………………………………......

  1. Поиски пригодных для жизни планет вне Солнечной системы…………

а. Понятие экзопланета………………………………………………………...

б. Планеты класса Сверхземля………………………………………………...

в. HD 85512 b…………………………………………………………………...

г. Межзвёздные обитаемые планеты………………………………………….

д. Инструмент изучения экзопланет…………………………………………..

е. Программа «Научный визуализатор экзопланет»……………………….

Заключение……………………………………………………………………

  1. Библиография……………………………………………………………….



















Введение.


Пред нами тайны обнажатся,

Возблещут дальние миры…

А.Блок


Изучение жизни во Вселенной — одна из сложнейших задач, с которой когда-либо встречалось человечество. Ведь речь идет о явлении, с которым людям, по существу, еще не приходилось непосредственно сталкиваться. Человек еще не побывал на других небесных телах, не видел ни одного внеземного живого организма. Все данные о жизни вне Земли, все без исключения, носят чисто гипотетический характер.


Поэтому только глубокое исследование биологических закономерностей, с одной стороны, и космических явлений, — с другой, тщательнейшее сопоставление и анализ разнообразных данных, накопленных различными естественными науками, способны привести к успеху в решении данного вопроса и в дальнейшем применение полученных результатов исследований для поисков во вселенной неземных форм жизни.


Проблема: возможность существования жизни во вселенной вне Земли.


Цель: выявить, насколько близки научные исследования и поиски к обнаружению внеземной жизни, теоретически изучить возможность жизни на планетах солнечной системы и экзопланетах.



Для достижения цели нужно решить следующие задачи:

  1. Выяснить, какие условие необходимы для

существования жизни.


2) Узнать, может ли существовать жизнь вне Земли.

3) Проанализировать данные, предоставленные учёными NASA, статьи из средств массовой информации, такие как научно-популярные журналы в печатном и электронном виде, а также научные симуляторы строения Галактики такие, как Celestia.












Поиск внеземной жизни - это всегда передний край науки, ибо вопросы происхождения жизни и места человека во Вселенной принадлежат к числу важнейших, фундаментальных научных проблем, в решении которых участвует каждое новое поколение людей в том числе они оказались интересны и для меня.


Из истории вопроса.


Глядя на миллиарды звезд, жители Земли уже давно задают вопрос: «Есть ли жизнь на других планетах?», но получить на него ни положительного, ни отрицательного ответа не могут, хотя и предпринимают самые разнообразные попытки выяснить истину. И пусть надежды остается все меньше и меньше, но по понятной причине человек все-таки хочет найти в космосе собратьев по разуму.

У многих древних народов на небе жили духи и боги, иногда в неимоверных количествах, от воли которых якобы зависела земная жизнь человека. Анаксагор, великий ученый Древней Греции, считал, что зародыши жизни есть везде, а Метродор Хиосский писал, что глупо считать планету Земля единственно обитаемой.

Лукреций Кар в I веке до нашей эры в поэме “О природе вещей” писал:

Во Вселенной еще и другие имеются земли

Да и людей племена, а также различные звери

На эту тему рассуждал 4 столетия назад итальянский философ Джордано Бруно.  Благодаря Галилею, который изобрел телескоп, в XVII веке на Луне были обнаружены долины и горы, появилось предположение о ее жителях — «селенитах. Так рухнуло представление о божественном предназначении надлунного мира.

Идея вечности жизни была выражена в трудах шведского ученого Аррениуса. В начале нашего века он разработал теорию панспермии, которая лишь повторяла по сути идеи древних мыслителей, но распространяла их на более широкие космические просторы. Согласно этой теории рассеянные в мировом пространстве зародыши жизни, например, споры микроорганизмов, переносятся с одного небесного тела на другое с метеоритами или под действием давления света.


  На каждом этапе развития мирового сообщества ученые не только высказывали мысли о существовании внеземных форм жизни, но и пытались найти доказательства существования внеземных цивилизаций и установить с ними связь. В 1899 году знаменитый сербский изобретатель Н. Тесла опубликовал рассказ о необычных сигналах, полученных им во время опытов, позднее об этом же сообщил Г. Маркони.

  Позже выяснилось, что эти сигналы от «зеленых человечков» оказались не более, чем пульсарами или иными периодическими радиосигналами от естественных небесных объектов.

В первую четверть XX столетия также предпринимались разрозненные попытки найти сигналы внеземных цивилизаций. Но весомых результатов получить не удалось, и идею временно забыли. После Второй мировой войны, которую пережила история земной цивилизации, научное и техническое развитие шагнуло далеко вперед, возникла новая наука — радиоастрономия, которая стала базой для следующего витка интереса к внеземным цивилизациям.

В 1959 году физики Д. Коккони и Ф. Моррисон обнародовали предположение, что с внеземным разумом можно установить контакты с помощью радиоволн. Однако поиск сигналов из космоса ни к чему не привел. Следующим значимым шагом считается проект «Озма» Ф. Дрейка, искавшего сигналы с помощью 25-метрового радиотелескопа, расположенного в Западной Вирджинии.

  В 1971 году NASA проявило желание финансировать проект SETI, известный как «Циклоп». Он предусматривал использование 1,5 тысячи радиотелескопов для поиска сигналов из Вселенной. Но вместо необходимых на него 10 млрд долларов выделили средства только на отправку в сторону шарового звездного скопления М13 зашифрованного сообщения.

В 1974 году в США была запущена автоматическая межпланетная станция “Пионер-10”. Несколько лет спустя она покинула пределы солнечной системы, выполнив различные научные задания. Есть ничтожно малая вероятность того, что когда-нибудь, через многие миллиарды лет, неведомые нам высоко цивилизованные инопланетные существа обнаружат “Пионер-10” и встретят его как посланца чужого, неведомого нам, мира. На этот случай внутри станции заложена стальная пластинка с выгравированными на ней рисунком и символами, которые дают минимальную информацию о нашей земной цивилизации. Это изображение составлено таким образом, чтобы разумные существа, нашедшие его, смогли определить положение солнечной системы в нашей Галактике, догадались бы о нашем виде и, возможно, намерениях

  С 1995 года астрономы США, потеряв надежду на получение средств от  правительства, обратились к частным инвесторам. В Калифорнии создали некоммерческий Институт SETI, ученые которого запустили проект «Феникс». Он предусматривает изучение звезд солнечного класса, расположенных ближе всего к Земле. С тех пор просканированы больше тысячи планет, но весомых достижений по-прежнему нет. Как не дал результатов и проект SETI@home астрономов из Беркли, которые с 1999 года привлекли к работе миллионы пользователей компьютеров.

 









































Основная часть.

1.Вероятность существования внеземных цивилизаций и необходимые условия для их возникновения.

Для выработки стратегии поиска внеземных цивилизаций (ВЦ) и в ноябре 1961 года на астрономической конференции в Грин-Бэнк (США) американский ученый Фрэнк Дрэйк (Frank Drake) предложил свою знаменитую формулу Дpейка:

n = N*Р1*Р2*Р3*Р4*(t/T),
где n – число цивилизаций, ищущих контакта [??? - ВВА], в нашей Галактике;
N - количество звезд в Галактике;
Р1 - вероятность того, что звезда имеет планетную систему;
Р2 - вероятность того, что на планете есть жизнь;
Р3 - вероятность того, что на планете есть разум;
Р4 - вероятность того, что на планете есть технология;
t - длительность технологической эры;
T – возраст Галактики.

Но, стоит оговориться, что формула оценивает число ВЦ только биологического типа и исключает другие формы жизни (кристаллическую и т.п.), к тому же она оценивает только тип планеты, соответствующий нашей. В 1979 году в формуле Дрейка появился дополнительный коэффициент Р5, учитывающий вероятность выхода ВЦ на уровень энергопотребления. В 2005 году был добавлен коэффициент Р6 (доля коммуникативных цивилизаций). Итак, попробуем разобраться насколько может быть справедлива эта формула, и сколько же ВЦ могут существовать на досягаемом расстоянии, например, в Нашей Галактике

Мы можем себе представить вокруг каждой звезды, имеющей планетную систему, зону, температурные условия в которой не исключают возможность развития жизни.
Вряд ли она возможна на планетах вроде Меркурия, температура освещённой Солнцем части которого выше температуры плавления свинца, или вроде Нептуна, температура поверхности которого -200°C. Нельзя, однако, недооценивать огромную приспособляемость живых организмов к неблагоприятным условиям внешней среды. Следует еще заметить, что для жизнедеятельности живых организмов значительно “опаснее” очень высокие температуры, чем низкие, так как простейшие виды вирусов и бактерий могут, как известно, находится в состоянии анабиоза при температуре, близкой к абсолютному нулю. Для эволюции живых организмов от простейших форм (вирусы, бактерии) к разумным существам необходимы огромные интервалы времени так как “движущей силой” такого отбора являются мутации и естественный отбор - процессы, носящие случайный характер. Именно через большое количество случайных процессов реализуется закономерное развитие от низших форм жизни к высшим. На примере нашей планеты Земли мы знаем, что этот интервал времени, по-видимому, превосходит миллиард лет. Поэтому только на планетах, обращающихся вокруг достаточно старых звёзд, мы можем ожидать присутствия высокоорганизованных живых существ. При современном состоянии астрономии мы можем только говорить об аргументах в пользу гипотезы о множественности планетных систем и возможности возникновения на них жизни. Для того, чтобы говорить о жизни, надо по крайней мере считать, что достаточно старые звёзды имеют планетные системы. Для развития жизни на планете необходимо, чтобы выполнялся рад условий общего характера. И совершенно очевидно, что далеко не на каждой планете может возникнуть жизнь. Кроме того, необходимо, чтобы излучение звезды на протяжении многих сот миллионов и даже миллиардов лет оставалось приблизительно постоянным.
Например, обширный класс переменных звёзд, светимости которых сильно меняются со временем (часто периодически), должен быть исключён из рассмотрения. Однако излучение большинства звёзд отличается удивительным постоянством. Например, согласно геологическим данным, светимость нашего Солнца за последние несколько миллиардов лет оставалась постоянной с точностью до нескольких десятков процентов. Чтобы на планете могла появится жизнь, её масса не должна быть слишком маленькой. С другой стороны, слишком большая масса тоже является неблагоприятным фактором, на таких планетах невелика вероятность образования твёрдой поверхности, они обычно представляют из себя газовые шары с быстро растущей к центру плотностью (например Юпитер и Сатурн). Так или иначе, массы планет, пригодных для развития жизни, должны быть ограничены как сверху, так и снизу. По-видимому, нижняя граница возможностей массы такой планеты близка к нескольким сотым массы Земли, а верхняя в десятки раз превосходит земную. Очень большое значение имеет химический состав поверхности и атмосферы. Как видно, пределы параметров планет, пригодных для жизни, достаточно широки.

Основными атомами, входящими в состав тех молекулярных комплексов, из которых образовалось живое вещество, являются водород, кислород, азот и углерод. Роль последнего особенно важна. Углерод - четырёхвалентный элемент. Поэтому только углеродные соединения приводят к образованию длинных молекулярных цепей с богатыми и изменчивыми боковыми ответвлениями. Именно к такому типу принадлежат различные белковые молекулы.

Другим важнейшим условием для зарождения жизни на планете является наличие на её поверхности достаточно большого количества жидкой среды.
В такой среде находятся в растворённом состоянии органические соединения и могут создаваться благоприятные условия для синтеза на их основе сложных молекулярных комплексов. Кроме того, жидкая среда необходима только что возникшим живым организмам для защиты от губительного воздействия ультрафиолетового излучения, которое на начальном этапе эволюции планеты может свободно проникать до её поверхности. Можно ожидать, что такой жидкой оболочкой может быть только вода Однако, в принципе, не исключена возможность, что на других небесных телах, при иных физических условиях может быть и иная химия жизни.

Так, например, в роли химического растворителя может выступать не только вода, но и некоторые другие вещества, обладающие определенными свойствами. К ним, в частности, относятся способность растворять большое количество различных веществ и хорошая текучесть. Кроме того, растворитель должен медленно нагреваться и медленно остывать. Это необходимо, чтобы предохранить живой организм от резких температурных колебаний. Хорошо также, если растворитель обладает низкой теплопроводностью. Это создает дополнительную защиту от возможных изменений температуры.

Важной характеристикой является и так называемая скрытая теплота переходов, т. е. то количество калорий, которое нужно затратить, чтобы один грамм данного вещества перевести из твердой фазы в жидкую и из жидкой в газообразную. При высокой теплоте переходов растворитель защищен от легкого замерзания или закипания, а это расширяет температурные пределы существования активной жизни.

Подходящими «жизненными растворителями» для низких, температур могут быть, например, фтористый водород или аммиак. Фтористый водород замерзает при температуре —83° С, а кипит при температуре +20° С. Что же касается аммиака, то при атмосферном давлении он существует при температуре от —78° С до —33° С.

При температуре от 0° С до —100° С растворителем может быть сернистый ангидрид, выделяющийся при вулканических явлениях, а при температуре ниже 100° С окись фтора, по многим свойствам напоминающая воду. Что же касается еще более низких температур, ниже —200° С, то подобные условия вряд ли пригодны для жизни. При такой; температуре химические связи с атомами углерода становятся настолько прочными, что органические молекулы теряют способность эффективно участвовать в реакциях.

С другой стороны, можно представить себе живые молекулы, в которых роль углерода выполняет какой-либо другой химический элемент, например, кремний или германий. Кремниевая или германиевая жизнь могла бы существовать лишь при достаточно высоких температурах от 200° до 400° Цельсия. Свойства растворителей с высокими температурами пока изучены недостаточно. Но, в принципе, такие горячие «жизненные растворители» можно себе представить, например, сернистые соединения фосфора и некоторые другие.

Но, разумеется, все это только предположения, хотя при том бесконечном разнообразии, которое существует во Вселенной, вряд ли химия живого везде является точной копией земной.

Но все эти рассуждения касаются только простейших форм жизни. Когда мы переходим к возможности тех или иных проявлений разумной жизни во Вселенной, мы сталкиваемся с очень большими трудностями. Жизнь на какой-нибудь планете должна проделать огромную эволюцию, прежде чем стать разумной. Движущая сила этой эволюции - способность организмов к мутациям и естественный отбор. В процессе такой эволюции организмы всё более и более усложняются, а их части - специализируются. Усложнение идёт как в качественном, так и в количественном направлении. Можем ли мы, однако, такой процесс считать универсальным для эволюции жизни во всех уголках Вселенной? Скорее всего – нет! Ведь в принципе при совершенно других условия средством обмена информацией между особями могли бы стать не продольные колебания атмосферы (или гидросферы), в которой живут эти особи, а нечто совершенно другое. Почему бы не представить себе способ обмена информацией, основанный не на акустических эффектах, а, скажем, на оптических или магнитных? И вообще - так ли уж обязательно, чтобы жизнь на какой-нибудь планете в процессе её эволюции стала разумной?

Но даже если предположить, что во вселенной существуют высокоорганизованные разумные формы жизни, то какими могут быть каналы связи между мини?

2.Возможные средства связи с инопланетянами

Ученые пришли к выводу, что наиболее естественный и практически осуществимый канал связи между какими-нибудь цивилизациями, разделёнными межзвёздными расстояниями, может быть установлен с помощью электромагнитных волн. Очевидное преимущество такого типа связи - распространение сигнала с максимально возможной в природе скоростью, равной скорости распространения электромагнитных волн, и концентрация энергии в пределах сравнительно небольших телесных углов без сколько-нибудь значительного рассеяния. Главными недостатками такого метода являются маленькая мощность принимаемого сигнала и сильные помехи, возникающие из-за огромных расстояний и космических излучений. Сама природа подсказывает нам, что передачи должны идти на длине волны 21 сантиметр (длина волны излучения свободного водорода), при этом потери энергии сигнала будут минимальны, а вероятность приёма сигнала внеземной цивилизацией гораздо больше, чем на случайно взятой длине волны. Вероятней всего, что и ожидать сигналов из космоса мы должны на той же волне.
Но, допустим, что мы обнаружили какой-то странный сигнал. Как распознать искусственную природу данного сигнала? Скорее всего он должен быть модулирован, то есть его мощность со временем должна регулярно меняться. На первых порах он должен, по видимому, быть достаточно простым. После того как сигнал будет принят (если, конечно, это случиться), между цивилизациями будет установлена двухсторонняя радиосвязь, и тогда можно начинать обмен более сложной информацией. Конечно, не следует при этом забывать, что ответы могут при этом быть получены не ранее, чем через несколько десятков или даже сотен лет. Однако исключительная важность и ценность таких переговоров безусловно должна компенсировать их медленность. Радионаблюдения за несколькими ближайшими звёздами уже несколько раз проводились в рамках крупного проекта “ОЗМА” в 1960 году и при помощи телескопа Национальной радиоастрономической лаборатории США в 1971 году.

Несмотря на очевидные преимущества космической радиосвязи, мы не должны упускать из виду и другие типы связи, так как заранее нельзя сказать с какими сигналами мы можем иметь дело. Во первых это оптическая связь, главный недостаток которой - очень слабый уровень сигнала, ведь несмотря на то, что угол расхождения светового пучка удалось довести до 10 -8 рад., ширина его на расстоянии нескольких световых лет будет огромной.
Также связь может осуществляться в помощью автоматических зондов. По вполне понятным причинам этот вид связи землянам пока недоступен, и не станет доступным даже с началом использования управляемых термоядерных реакций. При запуске такого зонда мы бы столкнулись с огромным количеством проблем, если даже считать время его полёта к цели приемлемым. К тому же на расстоянии менее 100 световых лет от солнечной системы уже имеется более 50000 звёзд. На какую из них посылать зонд? Таким образом, установление прямого контакта с внеземной цивилизацией с нашей стороны пока невозможно. Но может быть нам стоит только подождать? И они сами дадут о себе знать, ведь зафиксировано же множество контактов людей с НЛО на Земле. Различных случаев “наблюдения” инопланетян и их активности уже замечено так много, что ни в коем случае нельзя однозначно опровергать все эти данные. Можно только сказать что многие из них, как оказывалось со временем, являлись выдумкой или следствием ошибки. Но это уже тема других исследований. Если где-то в космосе будет обнаружена какая-то форма жизни или цивилизация, то мы совершенно, даже приблизительно, не можем себе представить, как будут выглядеть её представители и как они отреагируют на контакт с нами.
А вдруг эта реакция будет, с нашей точки зрения, отрицательной. Тогда хорошо если уровень развития внеземных существ ниже, чем наш. Но он может оказаться и неизмеримо выше. Такой контакт, при нормальном к нам отношении со стороны другой цивилизации, представляет наибольший интерес. Но об уровне развития инопланетян можно только догадываться, а об их строении нельзя сказать вообще ничего. Многие учёные придерживаются мнения, что цивилизация не может развиваться дальше определённого предела, а потом она либо погибает, либо больше не развивается. Например, немецкий астроном фон Хорнер назвал шесть причин, по его мнению способных ограничить длительность существования технически развитой цивилизации:
1) полное уничтожение всякой жизни на планете;
2) уничтожение только высокоорганизованных существ;
3) физическое или духовное вырождение и вымирание;
4) потеря интереса к науке и технике;
5) недостаток энергии для развития очень высокоразвитой цивилизации;
6) время жизни неограниченно велико;

3.Методы обнаружения внеземной жизни

Существует множество методов обнаружения внеземной жизни. Условно их можно разделить на три группы:

  1. Дистанционные методы наблюдения определяют общую обстановку на планете с точки зрения наличия признаков жизни. Дистанционные методы связаны с использованием техники и приборов, расположенных как на Земле, так и на космических кораблях и искусственных спутниках планеты.

  2. Аналитические методы призваны произвести непосредственный физико-химический анализ свойств грунта и атмосферы на планете при посадке автоматических биологических лабораторий (АБЛ). Применение аналитических методов должно дать ответ на вопрос о принципиальной возможности существование жизни.

  3. Функциональные методы предназначаются для непосредственного обнаружения и изучения основных признаков живого в исследуемом образце. С их помощью предполагается ответить на вопрос о наличии роста и размножения, метаболизма,



В последние годы, в связи с успехами астрономии, биологии, физики и техники возникла самостоятельная научная дисциплина — астробиология (экзобиология).

4.Астробиология

Астробиоло́гия (экзобиоло́гия) — наука, предметом которой является изучение происхождения, эволюции и распространения жизни во Вселенной. Астробиология опирается на научные достижения в области физики, химии, астрономии, биологии, экологии, планетологии, географии и геологии для исследования возможности существования жизни на других планетах. В решении некоторых задач астробиология тесно соприкасается с космической биологией и космической медициной, возникшими в связи с активным проникновением человека в космическое пространство. Астробиология осуществляет поиск пригодной для жизни среды обитания как в Солнечной системе, так и за её пределами, поиск доказательств пред биотической химии, лабораторные и практические исследования происхождения и раннего развития жизни на Земле, а также исследования потенциальных возможностей жизни в части приспособления к сложным условиям на Земле и в космосе.

Термин астробиология образован от древнегреческих слов астрон (др.-греч. ἄστρον) — «звезда», биос (др.-греч. βίος) — «жизнь» и логия (др.-греч). -λογία) — «учение». Есть различные синонимы термина «астробиология», однако все они включают две основные науки: астрономию и биологию. Термин-синоним «экзобиология» произошёл от греческого экзо (др.-греч. Έξω) — «вне, снаружи», биос (др.-греч. βίος) — «жизнь» и логия (др.-греч. -λογία) — «учение». Другой термин, использовавшийся в прошлом — ксенобиология, то есть «биология иноземцев». Это слово было придумано в 1954 году писателем-фантастом Робертом Хайнлайном в его романе «Звёздный Зверь».

Интерес НАСА к астробиологии начался с разработки Космической программы. В 1959 году НАСА профинансировало свой первый проект по экзобиологии, а в 1960 году создало Программу изучения экзобиологии. В 1971 году НАСА профинансировало проект (SETI) по поиску радиосигналов внеземных цивилизаций. Программа «Викинг», начатая в 1976 году, включала три биологических эксперимента, разработанных для поиска возможных признаков существования жизни на Марсе

В 21-ом веке астробиология становится центром растущего числа исследовательских миссий НАСА и Европейского космического агентства в Солнечной системе. Первый европейский семинар по астробиологии состоялся в мае 2001 года в Италии, результатом которого стала Программа Аврора. В настоящее время НАСА курирует Институт астробиологии НАСА (англ.). Все большее число университетов во всем мире вводят программы обучения по теме астробиологии. В Соединенных Штатах это Аризонский университет, университет Пенсильвании, университет штата Монтана и Вашингтонский университет; в Великобритании университет Кардиффа (создан Центр астробиологии), в Австралии Университет Нового Южного Уэльса. В России Постановлением Президиума Российской академии наук от 23.11.2010 организован Научный совет РАН по астробиологии.

5.Определение «жизнь» и зарождения и развития жизни во Вселенной.


Для изучения жизни нужно прежде всего определить понятие “живое вещество”. Этот вопрос является далеко не простым. Многие ученые, например, определяют живое вещество как сложные белковые тела, обладающие упорядоченным обменом веществ. Такой точки зрения придерживался, в частности, академик А.И.Опарин, много занимавшийся проблемой происхождения жизни на Земле. Конечно, обмен веществ есть существеннейший атрибут жизни, однако вопрос о том, можно ли сводить сущность жизни прежде всего к обмену веществ, является спорным. Ведь и в мире неживого, например у некоторых растворов, наблюдается обмен веществ в его простейших формах. Вопрос об определении понятия “жизнь” стоит очень остро, когда мы обсуждаем возможности жизни на других планетных системах.

В настоящее время жизнь определяется не через внутреннее строение и вещества, которые её присущи, а через её функции: “управляющая система”, включающая в себя механизм передачи наследственной информации, обеспечивающей сохранность последующим поколениям. Тем самым благодаря неизбежным помехам при передаче такой информации наш молекулярный комплекс (организм) способен к мутациям, а следовательно к эволюции.

Жизнь возникла на определенном этапе эволюции Вселенной. Она не могла возникнуть ни раньше и ни позже. Не возникнуть вообще она также не могла. Эволюция Вселенной определялась, в частности, химической эволюцией, то есть преобразованием химических элементов. Причем это преобразование было не случайным, а весьма определенным, прогрессивным.

Прогрессивность эта состоит в том, что в результате эволюции образовывались все более сложные элементы: вначале были только элементарные частицы (протоны, нейтроны, электроны и др.), затем начали образовываться ядра химических элементов (прежде всего легких; так, протон – это уже готовое ядро водорода); затем ядра объединялись со свободными электронами и образовывали нейтральные атомы. И только после этого в определенных условиях атомы объединились в молекулы. Мы уже говорили, что вначале на определенном этапе после Большого Взрыва образовались только легкие химические элементы. Только потом по истечении весьма продолжительного периода межзвездная среда стала «засоряться» тяжелыми химическими элементами. Они образовались как шлаки при термоядерном выгорании легких химических элементов внутри звезд. При взрывах Сверхновых эти шлаки (тяжелые химические элементы) звезды стали сбрасывать с себя как ненужную шубу. Звезды второго поколения, которые образовались (и продолжают рождаться) из межзвездной среды, уже засоренной тяжелыми элементами, имеют другой химический состав, более разнообразный. Планеты этих звезд образовались практически в едином процессе образования своих звезд, и их химический состав также определяется составом межзвездной среды, из которой они образовались.

Химическая эволюция шла не только по пути усложнения систем (от элементарных частиц к молекулам), что само по себе прогрессивно, так как более сложные образования предоставляют большие возможности при дальнейшем построении Мира. Прогрессивность химической эволюции состояла и в том, что на каждом новом этапе образовывались системы, внутри которых составляющие их частицы удерживались вместе все меньшими силами. Так, элементарные частицы (протоны и нейтроны) удерживаются внутри ядра самыми сильными из всех известных нам сил – ядерными силами. Поэтому при расщеплении ядра и происходит выделение огромного количества внутренней энергии (термоядерной). Вызвать термоядерную реакцию очень непросто, необходима огромная энергия, чтобы ядро расщепить. Другими словами, ядра – очень устойчивые системы (если не считать ядра некоторых тяжелых элементов – но это особый вопрос). Из-за высокой устойчивости, стабильности ядер они являются неизменными, консервативными, трудно поддающимися изменениям. Поэтому они – плохой строительный материал для дальнейшего творения Мира. Совсем другое дело атомы, образованные из этих ядер. Они цементируются как единые системы, имеющие свои определенные свойства, свое лицо, значительно меньшими, нежели ядерные, силами. Разорвать атом на электрон и ядро значительно легче, чем разорвать (расщепить) ядро. Поэтому атомы более мобильны. Они без большого труда могут превращаться в положительно заряженные ионы и отрицательно заряженные электроны. Возможен также процесс соединения нейтрального атома и свободного электрона. Его называют прилипанием. При этом образуется отрицательно заряженный ион. Таким образом, при переходе от ядер к атомам происходит, с одной стороны, усложнение системы (атомы более сложны, чем ядра, входящие в их состав), а с другой – новые системы удерживаются как единое целое значительно меньшими силами. Дальнейший этап эволюции – это преобразование атомов в молекулы. Здесь налицо как усложнение системы (строительных кирпичей), так и уменьшение сил, необходимых для удержания частиц, составляющих молекулы (то есть атомов), вместе.

Таким образом, химическая эволюция во Вселенной происходила с соблюдением, если можно так сказать, трех принципов: 1) сложность структур постепенно увеличивалась, 2) энергия, которая обеспечивала целостность этих структур (систем), постепенно уменьшалась и 3) число комбинаций из этих структур или, другими словами, число типов также постепенно увеличивалось.

Продолжая цепь элементарные частицы – ядра – атомы – молекулы, мы должны включить в нее очередное звено – огромные молекулы (макромолекулы) живого вещества. На это звено распространяются те же главные принципы, что и на всю предшествующую химическую эволюцию: система (структура) усложнилась, причем значительно; энергия связи, удерживающая обычные молекулы, или, как их называют, молекулы-мономеры, в единой структуре – макромолекуле, уменьшилась, поскольку новые связи являются не валентными, а возможности образованных макромолекул стали неизмеримо больше. Эти возможности стали большими потому, что макромолекулы могут очень легко перестраиваться, так как они цементируются не очень большими силами. В то же время этих сил достаточно, чтобы макромолекулы не разваливались самопроизвольно. Именно этой мобильностью макромолекул определяются все важнейшие процессы жизнедеятельности и размножения клеток.

Любопытно, что к химической эволюции применяется та же терминология, что и к эволюции живого вещества. Ее рассматривают как процесс, «который осуществляется в результате естественного отбора наиболее устойчивых к дальнейшему объединению частиц в изменяющихся внешних условиях». Поэтому химическая эволюция является процессом прогрессивным. Весь процесс эволюции, образования все более сложных структур со все большими возможностями происходит не всегда монотонно. Анализ показывает, что постепенное усложнение вещества во Вселенной происходит в медленно меняющихся процессах, тогда как «фиксация» вновь образовавшегося вещества, которое должно служить стройматериалом будущего развития, эволюции, происходит только при особых условиях, которые напоминают закаливание, то есть только тогда, когда внешние условия изменяются быстро, резко. Специалисты этот этап эволюции так и называют – «закалкой» состава. Это можно представить себе в виде непрерывной поточной технологической линии, на которой происходит непрерывное преобразование вещества от самой простой структуры до самой сложной. Но в определенных местах этой линии поставлены устройства закаливания, резко меняющие внешние условия. То вещество, которое оказалось в данном месте, будет зафиксировано, то есть далее не будет превращаться в более сложную структуру, а останется самим собой.

Так мы подошли к очень важному выводу, результату, может быть самому главному не только в проблеме поиска и эволюции внеземных цивилизаций, а и в проблеме понимания всего мироздания. Он состоит в том, что биологическая эволюция – это только определенное, но необходимое, обязательное звено общей прогрессивной эволюции во Вселенной. Это значит, что прогрессивная эволюция на Земле — это только песчинка в общей прогрессивной эволюции во Вселенной, которая началась не с появлением жизни, а значительно раньше, с момента Большого Взрыва. Даже когда биологическая эволюция прекратится, прогрессивная эволюция в масштабах всей Вселенной будет продолжаться, подчиняясь единому, несомненно существующему закону. Поэтому можно не сомневаться в том, что элементарные частицы, из которых состоят ядра, а также молекулы несут на себе печать всего предшествующего развития Вселенной, информацию о том, как они образовались и «закалились». Более того, даже мы с вами несем в себе воспоминания, историю не только эволюции биологической, но и всей прогрессивной эволюции вещества в расширяющейся Вселенной от момента Большого Взрыва! В это трудно верится, но это так.

Может ли при этом идти речь об уникальности жизни на Земле, об особых маловероятных обстоятельствах ее возникновения? Конечно, нет. Об этом говорят не только закономерности прогрессивной эволюции во Вселенной, описанные выше, но и обнаружение в космосе (в межзвездных облаках, метеоритах) сложных органических молекул. Эти органические молекулы несут в себе информацию об эволюции межзвездных облаков или оболочек холодных звезд, где они образовались в результате прогрессивной химической эволюции.

Роль этих сложных органических молекул можно понять исходя из схемы возникновения, образования жизни. На первом этапе эволюции жизни должны присутствовать начальные, исходные, или, как говорят специалисты, стартовые, соединения. Это СН4, Н2О, NН3, СО и др. Затем из них образуются биологические простые молекулы (мономеры). Это аминокислоты, азотистые основания и др. Затем из мономеров образуются сложные биологические молекулы – полимеры. Это нуклеиновые кислоты (ДНК и РНК) и белки. Нуклеиновые кислоты состоят из нуклеотидов, а они, в свою очередь, состоят из фосфата, азотистых оснований и сахара. Белки состоят из 28 веществ, а именно: двадцати аминокислот, пяти оснований, двух углеводов и одного фосфата.

Какие звенья из этой схемы обнаружены в космосе? Впервые биологические молекулы космического происхождения были обнаружены в Мерчисонском метеорите, который упал в 1969 году в Австралии. Это были белковые аминокислоты (всего шесть). Одновременно в том же метеорите содержались и другие 12 аминокислот, которые не встречаются в белках. Это доказывает, что все аминокислоты, обнаруженные в метеорите, имеют космическое происхождение. Собственно, возможность их космического происхождения доказывается даже лабораторными экспериментами. Когда на смесь, состоящую из аммиака, метана и паров воды, воздействовали ультрафиолетовым излучением, потоком энергичных электронов или же сильно увеличивали ее температуру, то в ней образовывались аминокислоты и углеводороды и одно из азотистых оснований нуклеиновых кислот – аденин.

В атмосферах холодных звезд, комет и межзвездных облаках нейтрального водорода были обнаружены простейшие двухатомные радикалы и в еще больших количествах (в атмосферах холодных звезд) многоатомные молекулы (HCN, С3N, НС3N, СН4, NН3 и др.). Было доказано экспериментально, что такие соединения могут образовываться в результате химических реакций в протопланетной околосолнечной туманности. В составе кометы Когоутека (1973 год) были обнаружены молекулы синильной кислоты и метил-циана. В облаках межзвездного газа также были обнаружены сложные органические молекулы, содержащие до 11 атомов. Они обнаружены и за пределами нашей Галактики.

Особый интерес представляют метеориты, которые называют углистыми хондритами. Хотя их по массе и немного (всего около 5 %), но они важны своим происхождением: их состав ближе всего к тому первичному веществу, из которого образовались планеты земной группы. Другими словами, они – в определенной мере ключ к пониманию образования жизни на Земле и происхождения органических ископаемых.

Исследования показали, что в углистых хондритах имеются следующие органические соединения: алифатические и ароматические углеводороды, гетероциклические азотистые основания (пурины, пиримидины, порфирины и др.), сахара и большое разнообразие аминокислот. Более 90 % органики составляет похожий на сажу ароматический полимер. При выделении органических веществ из метеоритов очень важно доказать, что они не привнесены с Земли. Так, у описанного выше метеорита Мерчисон в 1971 году были выделены 18 аминокислот, больше половины которых практически никогда не встречались в земных условиях. Это доказывало их «небесное» происхождение. Можно, конечно, предположить, что метеориты были засорены органическими соединениями в космосе. Исследования процессов в околосолнечной протопланетной туманности при ее остывании показали, что там образуется большое количество многоатомных углеводородов и других органических соединений таких же, как и в метеоритах. Таким образом, было доказано, что органические вещества в углистых хондритах имеют не биологическое происхождение, а возникли в результате химического синтеза в до планетной околосолнечной туманности.

Был изучен молекулярный состав межзвездной среды. Это делается на основании спектрального анализа излучения. Удалось исследовать по межзвездным линиям поглощения соединения СН, CН+. Заатмосферные измерения позволили проводить анализ линий поглощения и в инфракрасном, и в ультрафиолетовом участках спектра.

И.С. Шкловский теоретически показал, что свободные радикалы должны излучать в радиодиапазоне. В частности, длина волны радиоизлучения ОН равна 18 сантиметрам. В 1963 году эти выводы были подтверждены: на фоне непрерывного спектра ярчайшего космического радиоисточника Кассиопея А были обнаружены в поглощении радиолинии ОН, находящегося в межзвездной среде. Впоследствии были обнаружены не только линии поглощения ОН, но и такие же линии излучения ОН. Это излучение оказалось очень интенсивным и имело некоторые другие весьма экзотические свойства (переменность интенсивности излучения во времени, поляризация). Некоторое время считалось, что оно представляет собой радиосигналы внеземной цивилизации. Но впоследствии все эти свойства удалось объяснить естественными причинами.

Интенсивность излучения ОН очень велика потому, что эти молекулы находятся в сильно неравновесном, перевозбужденном состоянии. В таких условиях они способны излучать когерентно, то есть в фазе. При этом происходит усиление радиоизлучения. Такой эффект на радиоволнах был изучен в лабораторных условиях. Установки, позволяющие получать такое когерентное излучение в лабораторных условиях, называются мазерами (в отличие от лазеров, которые дают излучение в оптическом диапазоне). Значит, межзвездные молекулы ОН являются естественными мазерами. Они функционируют в условиях, связанных с самой ранней стадией эволюции звезд и планет. Их изучение может дать информацию о процессах на этапе рождения звезд и планет. Исследование излучения в радиодиапазоне на строго определенных длинах волн (другими словами, изучение радиолиний) позволило открыть многие органические молекулы в межзвездной среде. Среди них формальдегид (Н2СО), углеводороды, спирты, кислоты (синильная, изо-циановая, карбоновая), амиды кислот, амины, нитриты, простой и сложный эфиры. Были обнаружены молекулы, состоящие из 11 атомов, имеющие массу в 123 атомных единиц массы. Это HC9N (цианоктатетраин). Молекулярные облака нельзя исследовать с помощью видимого света, так как содержащаяся в них пыль поглощает свет и поэтому они воспринимаются как «черные» облака. Только радиоизлучение молекул приносит нам информацию о них. Водород в этих облаках находится в молекулярном состоянии, поэтому мы не регистрируем от них радиолиний с длиной волны 21 сантиметр (от атомарного водорода). Излучение радиолиний молекул межзвездного газа дает информацию не только о наличии молекул, но и о многом другом – кинетической температуре, плотности молекул, характере турбулентных движений. Можно даже определить напряженность магнитного поля в молекулярных черных облаках. Черные (молекулярные) облака являются самыми массивными в нашей Галактике. Плотность молекул увеличивается по направлению к его центру. Сложные молекулы локализуются в центре облака. Отсюда исходит радиоизлучение, возбуждаемое молекулами ОН и Н2О и имеющее мазерный характер.

Масса органических молекул в облаках может составлять в нашей Галактике порядка десяти масс Солнца. Масса органических соединений планет, вероятно, еще больше.

Таким образом, в последнее время была установлена широкая распространенность органических соединений в нашей Галактике, которые являются необходимым условием возникновения жизни. Ведь из смеси NH3, Н2, Н2О и СН4 при соответствующих условиях (наличии источников энергии) могут образовываться аминокислоты. Это происходит в молекулярных черных облаках. Так, в Стрельце В2 был открыт метанимин и метиламин. Соединение последнего с муравьиной кислотой дает аминокислоту – глицин.

Известны этапы эволюции жизни:

1) начальные молекулярные соединения (СН4, Н2О, NH3, СО и др.),
2) биологические мономеры (аминокислоты, азотистые основания и др.),
3) биополимеры,
4) до клеточная организация,
5) клетка.

Нуклеиновые кислоты (ДНК и РНК) и белки (то есть полимеры более простых веществ) являются биологическими молекулами. Нуклеиновые кислоты построены из нукле-отидов. Последние состоят из углевода, азотистых оснований и фосфата. Белки же состоят из 20 видов аминокислот. Все разнообразие известной нам жизни состоит из 28 веществ: 20 аминокислот, 5 оснований, 2 углеводов, 1 фосфата.

Рассмотренные выше данные говорят о том, что биологические молекулы могут образовываться в космосе (и образуются!).

Матричный синтез белков происходит по такой схеме. План построения клеточных белков хранится в молекуле ДНК, которая является своего рода закодированной инструкцией. В белки входят 20 обязательных аминокислот. Можно сказать, что язык ДНК состоит из четырех «букв-оснований» и из 20 «букв» (то есть аминокислот). Значит, каждая буква (аминокислота) кодируется триплетом оснований. На последовательности оснований некоторого участка ДНК происходит синтез молекул одно цепочечной рибонуклеиновой кислоты (РНК). Этот процесс называется транскрипцией. На образованной РНК синтезируется белок. Далее РНК переносится на рибосомы, то есть на клеточные органеллы в цитоплазме клетки (именно здесь происходит образование белков). На этом этапе и происходит образование белковой молекулы. Известно, что все живое на Земле связано с определенным химическим языком – генетическим кодом. Именно он определяет индивидуальное развитие и свойства каждого организма. Генетическая информация записана в нуклеиновых кислотах. Свойства данного организма зависят главным образом от белков. Связь нуклеиновых кислот с белками и осуществлена с помощью генетического кода.

До недавнего времени считалось, что генетический код для всех без исключения живых систем на Земле один и тот же, то есть что он является универсальным. Но не так давно были открыты системы, у которых генетический код отличается от универсального. Это митохондрии. Они присутствуют во всех клетках, имеющих ядро, и обеспечивают энергией живую клетку. В митохондриях существует собственная ДНК. В коде, который используют митохондрии, тройка нуклеотидов кодирует не ту аминокислоту, что в универсальном коде, а другую.

Это открытие наводит на далеко идущие мысли, имеющие непосредственное отношение к проблеме внеземных цивилизаций. В.И. Иванов на симпозиуме в Таллине в 1981 году высказал идею, что нынешний генетический код не возник сразу, а ему предшествовал более простой код (на более ранней стадии происхождения жизни). Этот первичный код не исчез окончательно, а сохранился в некоторых современных белково-нуклеиновых комплексах. Но он не играет роль генетического кода, а используется для точного узнавания нуклеиновых кислот и белков.

Это наталкивает на мысль, что и на других планетах в основе белково-нуклеиновой жизни лежит такое же стереохимическое соответствие нуклеиновой кислоты и белка, то есть первичный код белково-нуклеинового узнавания. Из этого первичного кода образовался настоящий генетический код. Он не должен быть точно таким же, как на Земле, или, другими словами, не обязательно генетический код будет единым на всю Вселенную. Но он будет различаться в разных местах Вселенной только незначительно.

На семинаре в Таллине в 1981 году В.С. Троицкий высказал очень любопытную гипотезу о возникновении и развитии жизни во Вселенной. Суть ее базируется на описанной выше прогрессивной эволюции (как химической, так и биологической). Согласно этой гипотезе жизнь возникла как закономерный этап эволюции Вселенной как целого, причем это произошло однократно и только на тех планетах, которые к этому были готовы. На вновь образующихся планетах впоследствии жизнь не возникала таким же путем. Другими словами, В.С. Троицкий предлагает считать, что жизнь во Вселенной возникла в результате одноразового взрывного процесса. Если это на самом деле было так, то получается следующая хронология всей истории Вселенной. Первые пять миллиардов лет после Большого Взрыва ушли на эволюцию от элементарных частиц до макромолекул. По истечении следующих 5 миллиардов лет на подходящих планетах появились организмы, и только после этого начался процесс эволюции социальных структур. Если эта гипотеза правильна, то цивилизации на других планетах во Вселенной находятся примерно на том же уровне развития, что и наша. Конечно, темпы их развития могут быть разными. Это зависит и от физико – химических условий в местах их обитания, и от других факторов, определяющих законы развития цивилизаций. В этом случае не исключено, что мы находимся в числе одних из первых, а может, и являемся самыми первыми.
Математический биолог Н. Рашевский считает, что принципиально может существовать сто миллионов биологических видов. На Земле за всю ее историю существовало четыре миллиона видов. Не реализованных на Земле остается еще 96 миллионов видов. Но невозможна ситуация, при которой на другой планете будут развиваться только такие биологические виды, которых не было и нет на Земле. Это несмотря на то, что резерв не использованных на Земле видов большой – 96 миллионов. Выбор видов происходит случайным образом. Если рассчитать по всем правилам математики вероятность того, что хотя бы один из видов на Земле будет такой же, как и на какой-либо планете, то окажется, что эта вероятность практически равна единице. То есть мы должны встретить на другой планете такой же вид, какой существует на Земле. Сколько всего видов может повториться? Было показано, что должно совпасть на двух планетах 160 000 видов. Значит, если мы на другой планете встретим жизнь, то 160 тысяч видов живых существ для нас окажутся знакомыми, такими же, как и на Земле. Специалисты этот результат формулируют так: «Между двумя биологиями нет различий, которые можно бы назвать существенными». Таким образом, не надо преувеличивать роль разнообразия биологических видов во Вселенной и думать, что мы встретим в других мирах одних только чудовищ.

Выяснив, что одним из основных условий необходимых для возникновения внеземной формы жизни является вода, рассмотрим, как часто они встречаются во Вселенной?



6.Вода, как условие возникновения жизни.


Вода - на первый взгляд кажется простейшее химическое соединение двух атомов водорода и одного атома кислорода - является, без всякого преувеличения, основой жизни на Земле. Интересно оценить, насколько велика распространенность этого вещества во Вселенной. Оказывается, достаточно велика

Энцелад считается самым чистым из спутников в Солнечной системе. Ученые отмечают, что поверхность Энцелада покрыта ровным слоем водяного льда, не имеющего никаких примесей. Это придает спутнику чистый белый цвет. На поверхности Энцелада обнаружено несколько желобков и небольших кратеров. Неожиданное открытие указывает на то, что под покровом льда находятся резервуары с жидкой водой, которая выходит на поверхность при помощи гейзера. Температура воды в резервуаре сравнительно теплая - около нуля по Цельсию, притом, что на поверхности Энцелада температура минус 188-193 градуса. При выходе на поверхность вода естественным образом замерзает. Именно момент выхода воды на поверхность – столб из пара и кусочков льда – и удалось заснять космическому аппарату. Однако ученые пока затрудняются сказать, что может подогревать воду. Это должны показать дальнейшие исследования. Тем не менее открытие придало исследователям немало оптимизма. «Мы нашли окружающую среду, в которой могли зародиться живые организмы, в неожиданном месте нашей Солнечной системы. Но до тех пор, пока мы там не окажемся, об этом нельзя говорить с уверенностью», - сказала Керолайн Порко, представитель института по изучению космоса в Болдере (штат Колорадо). В свою очередь специалист NASA Торренс Джонсон отметил, что «если удастся найти больше таких мест (с признаками наличия воды) и там будут необходимые источники энергии, то, вполне возможно, на так называемых ледяных спутниках других звезд или планет окажутся самые подходящие условия для жизни». «Это может перевернуть взгляд ученых на подобные вещи», - добавил Джонсон.


Вода на Марсе представлена ледяными шапками. Емкость северной полярной шапки составляет приблизительно 1.2 млн. км3 льда при средней толщине 1.03 км. В такой холодной атмосфере, как марсианская, где днем температура редко доходит до 300K, а ночью опускается ниже 170K, удержать сколько-нибудь заметное количество водяного пара невозможно. Если все содержащиеся в столбе воздуха пары воды осадить, получится микроскопическая пленка толщиной всего несколько десятков микрон. Еще один-два микрона осажденной воды содержится в облаках. Несмотря на всю свою экзотику, Марс – это самая близкая к Земле по основным климатическим параметрам планета Солнечной системы. Именно здесь, на этом природном полигоне, в условиях, максимально приближенных к боевым, отрабатывалась климатическая система, подобная той, что дала кров всему живому на Земле.


16 декабря 2009 г. была обнаружена первая планета-океан, GJ 1214 b. Эта планета стала первой, которая на 75 % по массе состоит из воды.


Благодаря открытию воды на ближайших планетах, мы можем смело предположить о наличии воды на планетах вне Солнечной системы, а значит о существовании там жизни, пусть даже в самых ее начальных проявлениях.


7.Возможные зоны жизни во Вселенной.


Планеты должны быть не меньше Марса, чтобы удержать у своей поверхности воздух и пары воды, но и не такими огромными, как Юпитер и Сатурн, протяжённая атмосфера которых не пропускает солнечные лучи к поверхности. Одним словом, планеты типа Земли, Венеры, возможно Урана при благоприятных обстоятельствах могут стать колыбелью жизни. А обстоятельства эти довольно очевидны: стабильное излучение звезды; определённое расстояние от планеты до светила, обеспечивающее комфортную для жизни температуру; круговая форма орбиты планеты, возможная лишь в окрестностях уединённой звезды (т. е. одиночной или компонента очень широкой двойной системы). Это главное. Часто ли в космосе встречается совокупность подобных условий?

Одиночных звёзд довольно много — около половины звёзд Галактики. Из них около 10% сходны с Солнцем по температуре и светимости. Правда, далеко не все они также спокойны, как наша звезда, но приблизительно каждая десятая похожа на Солнце и в этом отношении. Наблюдения последних лет показали, что планетные системы, вероятно, формируются у значительной части звёзд умеренной массы. Таким образом, Солнце с его планетной системой должны напоминать около 1% звёзд Галактики, что не так уж мало — миллиарды звёзд.

Благоприятный для возникновения диапазон температур — 0—100 °С.

Температура на поверхности планеты в основном зависит от светимости родительской звезды и расстояния до неё. В конце 50-х гг. американский астрофизик, китаец по рождению, Су-Шу Хуанг исследовал эту проблему детально: он рассчитал. На каком расстоянии от звёзд разного типа могут находиться обитаемые планеты, если средняя температура на их поверхности лежит в пределах 0—100 °С. Ясно, что вокруг любой звезды существует определённая область — зона жизни, за границы которой орбиты этих планет не должны выходить. У звёзд-карликов она близка к звезде и неширока. При случайном формировании планет вероятность, что какая-нибудь из них попадёт в эту область, мала. У звёзд высокой светимости зона жизни находится далеко от звезды и очень обширна. Это хорошо, но продолжительность их жизни так мала, что трудно ожидать появления на их планетах разумных веществ (земной биосфере для этого понадобилось более 2 млрд. лет).



8.Поиски жизни в солнечной системе.


Спутники и космические зонды неоднократно запускались к внутренним планетам: российская «Венера», американские «Маринер» к Меркурию и «Викинг» к Марсу. Запущенные в 1972-1973 гг. американские зонды «Пионер-10» и «Пионер-11» достигли внешних планет - Юпитера и Сатурна. В 1977 г. к Юпитеру, Сатурну, Урану и Нептуну были также запущены «Вояджер-1» и «Вояджер-2». Некоторые из этих зондов до сих пор продолжают летать у самых границ Солнечной системы и будут посылать информацию на Землю.

По предположениям многих ученных, в Солнечной системе некоторые космические тела пригодны для жизни помимо Земли.


А.Марс.

Согласно некоторым предположениям жизнь могла возникнуть и на Марсе. Некоторые ученые даже предполагали, что изначально она и возникла именно там и только затем была перенесена на 3емлю. Открытия, сделанные в последнее время учеными, только подогревают интерес общественности к красной планете, стимулируя астрономов и физиков тратить на изучение истории настоящего и прошлого Марса все больше времени и материальных средств.

Ответ на вопрос «есть ли жизнь на Марсе» еще не получен, а вот то, что там есть вода, – неоспоримый факт, который установили приборы (в том числе и российский нейтронный детектор HEND) на борту американских марсоходов. Причем если в хороший телескоп можно даже увидеть ледяные полярные шапки, что позволяло сделать вывод о содержании воды на Марсе в полярных областях, то недавно было объявлено об обнаружении чистого льда на дне марсианских кратеров, расположенных в средних широтах, между марсианским экватором и полюсом.

(История воды на Марсе).

Ученым также удалось найти на Марсе участки поверхности, по показателям сухости и температуры окружающей среды сопоставимые с некоторыми регионами Земли. Самое главное, что условия на этих участках в свое время были достаточно благоприятны для развития живых организмов.

Интересно что, камень ALH 84001 был обнаружен в Антарктиде в 1984 году. Ученые заключили, что он был выбит с поверхности Марса около 17 миллионов лет назад. На поверхности метеорита были обнаружены структуры, по внешнему виду напоминавшие окаменевшие бактериальные наросты. В составе камня химики нашли сложные органические молекулы. Эти факты могли служить косвенными подтверждениями теории о существовании на Марсе жизни в прошлом или настоящем.



Фотографии, сделанные исследовательской станцией Mars Global Surveyor 30 августа 1999 года (слева) и 10 сентября 2005 года. Последняя фотография имеет размыв, оставляемый водой.


Микробы, живущие в Гренландии и вырабатывающие метан, могут пролить свет, живут ли подобные организмы на Марсе или нет? На Марсе могут жить микробы
К такому выводу пришли ученые из университетов Монтана и Калифорния.


Исследование обнаруженных микробов, прячущихся в порах кристаллизованного льда дает основание считать, что найденный в марсианской атмосфере метан может производиться похожими микроорганизмами, которые могут обитать во льду внутри планеты.



 

Верхний рисунок - ископаемые, найденные в массе метеорита ALH84001, предположительно это окаменелость бактерии, что косвенно подтверждается относительным расположением объектов и чистотой обнаруженного магнетита [Изображение НАСА]. Нижний рисунок – магнитотактическая бактерия M. bavaricum, обнаруженная в Баварии [Германия]. Отчетливо видны цепочки кристаллов магнетита внутри бактерии и гранулы серы - темные шары [Изображение группы изучения биомагнетизма Мюнхенского Университета]. (
Ученые представили результаты исследования, которое доказывают наличие в метеорите окаменелостей микроорганизмов, более того, они заявили, что другие марсианские метеориты также содержат четко различимые и идентифицируемые окаменелости микробов, что еще больше подтверждает существование внеземной жизни.

«Мы более чем когда-либо уверены, что Марс, вероятно, когда-то был и, возможно, до сих пор является пристанищем жизни», - заявил глава группы исследователей Дэвид Маккей на организованной НАСА конференции по астробиологии.

Однако, до сих пор не доказано марсианское происхождение любых возможных микроископаемых, найденных в метеоритах, так как не исключено их формирование при загрязнении уже после падения метеорита на Землю. Кроме того, все марсианские метеориты состоят из твердой магматической породы, так как более хрупкая осадочная порода, которая с большей вероятностью может содержать следы жизни, распадается до достижения Земли.
Во множестве докладов, посвященных жизни на Марсе, предпологается, что сухой и холодный в настоящем, Марс некогда был теплым и влажным, вполне пригодным для жизни.
Например, планетолог НАСА Кэрол Стокер [Carol Stoker] заявил, что Phoenix Mars Lander, совершивший в 2008 году посадку в полярном районе северного полушарии, обнаружил на современном Марсе тяжелые, но пригодные для жизни условия. Стокер был одним из исследователей по нескольким инструментам аппарата.
Ведущий исследователь НАСА принимавший участие в 6-ти летней миссии марсоходов Spirit и Opportunity по программе Mars Exploration Rover Стивен Сквайрс [Steven Squyres] сообщил, что он убежден в том, что однажды на Марсе были условия пригодные для жизни. Ученый заявил, что Марс когда-то имел жидкую воду на поверхности или близко к ней, на это указывают обнаруженные марсоходами многочисленные минералы, которые могли сформироваться только в присутствии воды.
Пейзажи Марса весьма разнообразны:

Фотография Mars Odyssey (NASA). Район Chasma Boreale:

Коричневатое серое небо на закате. Изображение в реальных цветах получено модулем Pathfinder на Марсе на 24-й марсианский день пребывания на поверхности(22 июня 1996). Небо около Солнца светло-голубого цвета(NASA/JPL)

Фотография Mars Express (NASA). Район Hebes Chasma:

 Фотографии Марсохода Curiosity с Марса:





Снимок, переданный самоходным роботом "Спирит" с поверхности Марса:
(кратер Гусева)

Увеличив один из фрагментов фотографии, ученые обнаружили непонятный предмет, который можно идентифицировать как угодно?

 

Б. Спутник Юпитера - Европа

Европа — спутник Юпитера, наименьший из четырёх галилеевых спутников.


История открытия и название

Европа была открыта Галилео Галилеем в 1610 году с помощью изобретённого им телескопа. На открытие спутника претендовал также немецкий астроном Симон Мариус, который наблюдал Европу в 1609 году, но вовремя не опубликовал данные об этом.

Европа названа по имени персонажа древнегреческой мифологии — возлюбленной Зевса (Юпитера) Название «Европа» было предложено Симоном Мариусом в 1614 году, однако в течение долгого времени оно практически не использовалось. Галилей назвал четыре открытые им спутника Юпитера «планетами Медичи» и дал им порядковые номера; Европу он обозначил как «второй спутник Юпитера». Лишь с середины XX века название «Европа» стало общеупотребительным.


Физические характеристики

Европа относится к числу крупнейших спутников планет Солнечной системы; по размерам она близка к Луне.

Европа всегда повёрнута к Юпитеру одной стороной. Ио, Европа и Ганимед находятся в орбитальном резонансе — их орбитальные периоды относятся как 1:2:4.

Европа больше похожа на планеты земной группы, чем другие «ледяные спутники», и в значительной степени состоит из горных пород. Она полностью покрыта слоем воды толщиной предположительно порядка 100 км (частью — в виде ледяной поверхностной коры толщиной 10—30 км; частью, как полагают, — в виде подповерхностного жидкого океана). Далее залегают горные породы, а в центре предположительно находится небольшое металлическое ядро.


Поверхность

Поверхность Европы очень ровная, лишь немногие образования, напоминающие холмы, имеют высоту несколько сот метров. Высокое альбедо спутника свидетельствует о том, что поверхностный лёд довольно чистый, и, следовательно, «молодой» (полагают, что, чем чище лёд на поверхности «ледяных спутников», тем он моложе). Количество кратеров невелико, имеется только три кратера диаметром больше 5 км, что также говорит об относительной молодости поверхности. По оценкам, её возраст не превышает 30 млн лет, и, следовательно, Европа обладает высокой геологической активностью. В то же время, сравнение фотографий «Вояджеров» и «Галилео» не выявило каких-либо изменений за прошедшие 20 лет.

Поверхность Европы по земным меркам очень холодная — 150—190 °C ниже нуля. На поверхности спутника должна наблюдаться высокая радиация, так как орбита Европы проходит через мощный радиационный пояс Юпитера.


Вся поверхность Европы испещрена множеством пересекающихся линий. Это разломы и трещины ледяного панциря. Некоторые линии почти полностью опоясывают планету. Система трещин в ряде мест напоминает трещины на ледяном панцире Северного полюса Земли.

Предполагают, что поверхность Европы претерпевает постоянные изменения, в частности, образуются новые разломы. Края некоторых трещин могут двигаться относительно друг друга, причём подповерхностная жидкость иногда может подниматься через трещины наверх. На Европе имеются протяжённые двойные хребты; возможно, они образуются в результате нарастания льда вдоль кромок открывающихся и закрывающихся трещин.

Нередко встречаются и тройные хребты. Полагают, что механизм их образования происходит по следующей схеме. На первом этапе в результате приливных деформаций в ледяном панцире образуется трещина, края которой «дышат», разогревая окружающее вещество. Вязкий лёд внутренних слоёв расширяет трещину и поднимается вдоль неё к поверхности, загибая её края в стороны и вверх. Выход вязкого льда на поверхность образует центральный хребет, а загнутые края трещины — боковые хребты. Эти геологические процессы могут сопровождаться разогревом вплоть до плавления локальных областей и возможных проявлений криовулканизма.

На поверхности спутника имеются протяжённые полосы, покрытые рядами параллельных бороздок. Центр полос светлый, а края тёмные и размытые. Предположительно, полосы образовались в результате серий криовулканических водных извержений вдоль трещин. При этом тёмные края полос, возможно, сформировались в результате выброса на поверхность газа и осколков пород. Имеются и полосы другого типа, которые, как полагают, образовались в результате «разъезжания» двух поверхностных плит, с дальнейшим заполнением трещины веществом из недр спутника.

Рельеф некоторых частей поверхности позволяет предположить, что в этих участках поверхность когда-то была полностью расплавлена, и в воде даже плавали льдины и айсберги. Причём видно, что льдины (вмороженные ныне в ледяную поверхность) ранее образовывали единую структуру, но затем разъехались и повернулись.

Обнаружены тёмные «веснушки» — выпуклые и вогнутые образования, которые могли сформироваться в результате процессов, аналогичным лавовым излияниям (под действием внутренних сил «тёплый», мягкий лёд двигается от нижней части поверхностной корки вверх, а холодный лёд оседает, погружаясь вниз; это ещё одно из доказательств присутствия жидкого, тёплого океана под поверхностью). Встречаются и более обширные тёмные пятна неправильной формы, образовавшиеся, предположительно, в результате расплавления поверхности под действием приливов океана, либо в результате выхода внутреннего вязкого льда. Таким образом, по тёмным пятнам можно судить о химическом составе внутреннего океана и, возможно, прояснить в будущем вопрос о существовании в нём жизни.


Имеются участки с волнообразной поверхностью, образовавшиеся, вероятно, в результате процессов сжатия ледяного панциря.

На поверхности также имеется кратер Пвилл, в центре которого находится горка, превышающая его края по высоте, что может свидетельствовать о выходе мягкого льда или воды через отверстие, пробитое метеоритом.

Ландшафты Европы классифицируют на следующие основные типы:

•Равнинные области. Гладкие равнины могут образоваться в результате активности криовулканов, которые извергаются на поверхность, заполняя растекающейся водой огромные площади.
•Хаотические области, которые напоминают случайно разбросанные «обломки» разных геометрических форм.
•Области с преобладанием линий и полос.
•Хребты (как правило двойные).
•Кратеры.


Океан

Вышеприведённые характеристики поверхности Европы свидетельствуют о существовании жидкого океана под ледяной коркой на её поверхности. Глубина океана — до 90 км; его объём превышает объём мирового океана Земли. Тепло, необходимое для поддержания его в жидком состоянии, предположительно вырабатывается за счёт приливных взаимодействий (в частности, приливы поднимают поверхность спутника на высоту до 30 метров). В то же время, существует и альтернативная теория, объясняющая характер поверхности наличием не жидкого океана, а слоя мягкого льда.

Существование подповерхностного океана подтверждается переменным характером магнитного поля Европы. Если бы поле образовалось под действием ферромагнитного ядра, то оно было бы гораздо стабильнее и слабее. Магнитные полюса расположены вблизи экватора спутника и постоянно смещаются. Изменения мощности и ориентации поля коррелируют с прохождением Европы через магнитное поле Юпитера. Это можно объяснить лишь наличием токопроводящей жидкости (воды) под поверхностью спутника: сильное магнитное поле Юпитера вызывает электротоки в солёном океане Европы, которые и формируют её необычное магнитное поле.


Роботы «Криобот» и «Гидробот» в океане Европы (представление художника)



Спектральный анализ тёмных линий и пятен на поверхности показал наличие солей, в частности, сульфата магния («английская соль»). Красноватый оттенок позволяет предположить наличие также сернистых и железистых веществ. По-видимому, эти соли содержатся в океане Европы. Кроме того, обнаружены следы перекиси водорода и сильных кислот.

Предполагается, что подлёдный океан Европы близок по своим параметрам к участкам океанов Земли вблизи глубоководных геотермальных источников, а также к подлёдным озёрам, таким, как озеро Восток в Антарктиде. В таких водоёмах может существовать жизнь. В то же время, некоторые учёные полагают, что океан Европы может представлять собой довольно ядовитую субстанцию, не слишком подходящую для жизнедеятельности организмов.

Помимо Европы, океаны предположительно имеются на Ганимеде и Каллисто (судя по структуре их магнитных полей). Но, согласно расчётам, жидкий слой на этих спутниках начинается глубже и имеет температуру существенно ниже нуля (при этом вода остаётся в жидком состоянии благодаря высокому давлению).

Открытие на Европе водяного океана имеет важное значение для поисков внеземной жизни. Поскольку поддержание океана в тёплом состоянии происходит не столько благодаря солнечному излучению, сколько в результате приливного разогрева, то это снимает необходимость наличия близкой к планете звезды для существования жидкой воды — необходимого условия возникновения белковой жизни. Следовательно, условия для формирования жизни могут возникать в периферийных областях звёздных систем, около маленьких звёзд и даже вдали от звёзд, например, в системах планетаров.


Атмосфера

Космический аппарат «Галилео» обнаружил на Европе ионосферу, что указывало на существование атмосферы у спутника. Впоследствии с помощью орбитального телескопа «Хаббл» у Европы действительно были замечены следы крайне слабой атмосферы, давление которой не превышает 1 микропаскаль. Атмосфера состоит из кислорода, образовавшегося в результате разложения льда на водород и кислород под действием солнечной радиации (лёгкий водород при столь низком тяготении улетучивается в космос).

Изучение Европы с помощью космических аппаратов

Первые фотографии Европы из космоса были сделаны станцией «Пионер-10», которая пролетела мимо Юпитера в декабре 1973 года. Качество этих снимков лучше того, что было доступно телескопам того времени.

В марте 1979 года Европу с пролётной траектории изучал «Вояджер-1» (максимальное сближение — 732 тыс. км), а в июле — «Вояджер-2» (190 тыс. км). Космические аппараты передали качественные снимки спутника и провели ряд измерений. Гипотеза о существовании на спутнике жидкого океана появились именно благодаря данным «Вояджеров».

С декабря 1995 по сентябрь 2003 года систему Юпитера изучал «Галилео». Из 35-ти витков аппарата вокруг Юпитера, 11 были посвящены изучению Европы (максимальное сближение — 201 км). «Галилео» обследовал спутник довольно детально, были получены новые доказательства в пользу существования океана. В 2003 году «Галилео» был намеренно уничтожен в атмосфере Юпитера, чтобы в будущем неуправляемый аппарат не упал на Европу и не занёс на спутник земные микроорганизмы.

В последние годы разработано несколько перспективных проектов изучения Европы с помощью космических аппаратов. Один из них — амбициозный проект Jupiter Icy Moons Orbiter, который первоначально планировался в рамках программы «Прометей» по разработке космического аппарата с ядерной энергоустановкой и ионным двигателем. Этот план был отменён в 2005 году из-за нехватки средств. В настоящее время в НАСА прорабатывается проект Europa Orbiter, предполагающий вывод на орбиту Европы космического аппарата с целью подробного изучения спутника. Запуск аппарата может быть произведён в ближайшие 7—10 лет, при этом возможно сотрудничество с ЕКА, которое также разрабатывает проекты по изучению Европы.

7 января 2008 года директор Института космических исследований Л. М. Зелёный заявил, что европейские и российские учёные планируют направить к Юпитеру и Европе экспедицию из нескольких космических аппаратов. Проект предполагает выведение на орбиты Юпитера и Европы двух космических аппаратов, но российские учёные предлагают включить в программу третий, спускаемый аппарат, который совершит посадку на поверхности Европы. Спускаемый аппарат планируется посадить в одном из разломов в многокилометровом слое льда на поверхности планеты. После посадки, аппарат расплавит полуметровый слой льда и начнёт поиск простейших форм жизни. Проект получил название «Лаплас», и будет включён в программу Европейского космического агентства на период с 2015 по 2025 год. В нём приглашены участвовать российские учёные из Института космических исследований, НПО Лавочкина и других российских организаций космической тематики.


Две возможные модели строения Европы










В.Энцелад — шестой по размерам спутник Сатурна.

Оказалось спутник Сатурна –Энцелад лучшее место для поиска внеземной жизни.

Он был открыт в 1789 году в ходе наблюдений Уильяма Гершеля.

Поверхность

На поверхности Энцелада холоднее, чем на других планетах-спутниках Сатурна: температура в среднем составляет −200 °C. Столь низкая температура обусловлена крайне высоким показателем альбедо, составляющим 90 %. При такой низкой температуре ни одна из известных форм жизни не выживет на его поверхности.

На поверхности Энцелада довольно много трещин. С их помощью учёные смогли установить, что под ледяной коркой имеется океан. Температура в трещинах может доходить до −85 °C, что значительно выше, чем у поверхности.

Под поверхностью

По данным с «Кассини», в недрах Энцелада находится углеводородный «суп», жидкая вода и источник тепла, то есть все ключевые ингредиенты для возникновения примитивных форм жизни.

Океан

На южном полюсе под ледяной коркой Энцелада на глубине 15—20 км находится океан из жидкой воды. На это указывают все данные с «Кассини», собранные вместе. Температура верхних слоёв океана составляет около −45 °C, однако с ростом глубины температура растёт и может доходить примерно до 0…+1 °C, что сравнимо с температурой воды в некоторых местах на Земле. Более того, в июне 2011 года учёные с помощью «Кассини» установили, что вода в океане солёная и по составу очень близка к земной. Все эти открытия значительно увеличивают вероятность того, что на Энцеладе есть жизнь.

В конце 2005 года зонд Cassini, который работает на орбите Сатурна, проводил съемку Энцелада, одного из спутников этой планеты. На снимках, сделанных в тот момент, когда Энцелад подсвечивался сзади Солнцем, ученые обнаружили нечто похожее на фонтаны. На поверхности Энцелада в его южной приполярной области, как оказалось, есть источники, выбрасывающие в окружающее пространство "фонтаны" мелких частиц. Таких фонтанов там несколько и они разных размеров. Для получения более надежной информации команда ученых провела обработку снимков, чтобы усилить слабый сигнал и сделать более наглядными контуры факелов выбрасываемой материи. На основе данных о рассеянии света выбрасываемыми частицами ученые определили, что частицы представляют собой главным образом маленькие кристаллики водяного льда и что высота этих фонтанов составляет не менее 100 км. Пока точно неизвестно, что вызывает такой выброс льда с поверхности Энцелада. Но есть две гипотезы. Первая состоит в том, что частички водяного льда - это замерзшие пары воды, образовавшиеся при нагревании поверхностного льда Солнцем. Вторая предполагает, что на некоторой глубине под поверхностью Энцелада температура породы достаточно высока для превращения льда в воду и эта вода под давлением выбрасывается на поверхность как в гейзере. Чтобы прояснить ситуацию, зонду Cassini нужно продолжить исследования Энцелада.



 

Даты сближения зонда Cassini с Энцеладом и результаты:


    17 февраля 2005 года Кассини пролетел на расстояниии около 17 тысяч километров от поверхности спутника Сатурна - Энцелада. Полученные данные указывают, что у этого спутника есть довольно динамичная атмосфера. Атмосфера у Энцелада была обнаружена с помощью магнетометра Cassini. С помощью масс-спектрометра и ультрафиолетового спектрографа удалось установить, что атмосфера Энцелада на 65% состоит из водяного пара, 20% приходятся на молекулярный водород, а остальные 15% - это углекислый газ, молекулярный азот и моноксид углерода (СО). Причем, характер распределения плотности водяного пара по высоте указывает на то, что он, скорее всего, выделяется из какого-то геотермального источника. Гравитационное притяжение Энцелада очень мало и его атмосфера должна была бы давно рассеяться в космосе. Это означает, что на поверхности Энцелада идет постоянное выделение водяного пара. Температура поверхности вблизи экватора Энцелада составляет -193°С. Она примерно совпадает с теоретической, рассчитанной на основе данных об интенсивности излучения Солнца в этой части солнечной системы. По идее на полюсах Энцелада должно быть холоднее, чем на экваторе, так как солнечные лучи здесь падают на поверхность почти по касательной. Однако средняя температура южной приполярной области составляет -188°, а на некоторых небольших участках вблизи большого разлома она еще выше - -163°. Ученые считают, что именно в этих местах под действием внутреннего тепла происходит испарение поверхностного льда с образованием облаков водяного пара. Подобные данные озадачивают ученых: ведь если нагрев недр происходит из-за приливной раскачки, то почему разогреву подвергается только область вокруг южного полюса, где расположены загадочные полосы.   

 14 июля 2005 станция "Кассини" прошла на рекордно близком расстоянии от поверхности спутника Сатурна (пролет на расстоянии 175 км от поверхности). Сделанные снимки повергли астрономов в изумление: оказалось, что ледовая поверхность Энцелада сплошь покрыта гигантскими валунами диаметром в 10-20 метров (а камера ISS способна различать предметы размером всего в четыре метра). Нигде больше в Солнечной системе ничего подобного не наблюдалось. Поверхность Энцелада испещрена трещинами, возникшими, вероятно, вследствие мощного воздействия гравитации Сатурна и других его спутников, однако, как ни парадоксально, вышеуказанные валуны имеют тенденцию располагаться где угодно, но только не в трещинах. Следовательно, трещины возникли уже после того, как эти "айсберги" окончательно сформировались. Учёные теряются в догадках относительно природы такого ландшафта. Есть, однако, и некоторые догадки. Геологи различают на поверхности Энцелада следы не менее 5 этапов его геологической эволюции. Бескратерные районы датируются возрастом менее 100 млн. лет. Это всего 2% продолжительности истории Энцелада. Теоретики в качестве возможного источника активности сейчас называют приливное рассеяние энергии, вызываемое Дионой и самим Сатурном, но для этого спутник должен был находиться на более вытянутой орбите.

Наиболее впечатляющие изображения Энцелада полученные аппаратами Кассини (NASA/ESA)



    







Присутствие океана соленой воды в миллиардах километров от Земли может указывать на наличие инопланетной микробной жизни. Но вода не единственный фактор, который делает Энцелад многообещающей средой обитания. Вода соприкасается с каменным ядром спутника, так что элементы, необходимые для жизни, такие как фосфор, сера и калий будет вымывать в океан. Энцелад привлекает внимание ученых ещё и тем.что струи пара, выходящие из южного полюса, содержат органические молекулы. Это, наряду с основными элементами, источником тепла и жидкой воды делает Энцелад первым кандидатом в поисках инопланетных органики.

В южном полушарии Энцелада можно заметить "тигровые полосы" – разломы через которые выходит вода. Температура "тигровых полос" теплее, чем в остальной части (-93 градуса по Цельсию), и там были найдены органические соединения.

"Технически возможно отправить зонд, который мог бы пробурить дыру и проверить воду, чтобы дать ответ, одни мы во Вселенной, или там живет еще что-то", - утверждает математик Николай Бриллиантов из Лестерского университета.

Рассвет на Энцеладе:





Г.Титан-спутник Сатурна


Титан в мультиспектральном виде


Титан - единственная луна в Солнечной системе, обладающая толстым слоем атмосферы (состоит в значительной степени из азота) и сложной органической химией.

Спектральный анализ показал, что в жидком виде на поверхности Титана находятся этан, пропан, метан и другие углеводороды. Исследования показали, что углеводородные озёра Титана содержат около 1% ацетилена, который в сочетании с водородом может обеспечивать пищей микроорганизмы. Низкая температура и высокая вязкость титановых озёр исключают любое волнение на их поверхности, поэтому учёные долго сомневались в наличии жидкостей на Титане. Некоторые ученые предполагают, что углеводородные озёра Титана – это новая форма жизни. Гипотеза о существовании жизни на спутнике Сатурна основывается на поразительной схожести Земли и Титана. На обеих планетах существуют азотистая атмосфера, ярко выраженные времена года (год на Титане равен 30 земным годам) и круговорот жидкостей, то есть, испарение и выпадение осадков. Летом 2010 года было сообщено, что специалисты американского Национального аэрокосмического агентства (НАСА) получили данные, на основании которых высказали гипотезу о возможном существовании жизни на спутнике планеты Сатурна Титане. Такие выводы они сделали на основе анализа данных, полученных с американского искусственного спутника «Кассини», учёных поразили два факта:

Первое открытие – потоки молекулярного водорода, которые опускаются из атмосферы Титана к его поверхности, но не накапливаются, а куда-то «исчезают». Второе исследование уточненило химический состав углеводородов, которыми так богат этот спутник, и оно показало неожиданную и важную деталь – отсутствие на его поверхности ацетилена.

Именно эта небольшая особенность и вызвала переполох в научном мире. Дело в том, что еще 5 лет назад крупный астробиолог Кристофер Маккей (Christopher McKay) сформулировал ряд свойств, которыми должна, в теории, обладать «метановая жизнь», если она на Титане имеется. В его интерпретации именно ацетилен должен служить для нее основным питательным веществом, а молекулярный водород может быть еще более полезным питательным веществом для этих странных организмов.

Он заявил:

«Мы высказали предположение о потреблении водорода уже потому, что это – наиболее подходящий газ из доступных на Титане, как кислород, который мы потребляем на Земле. Если эти данные действительно являются признаками наличия жизни, то это особенно интересно, ведь мы найдем совершенно новую форму жизни, отличную от нашей, которая базируется на жидкой воде».

К сожалению, пока что «метановая жизнь» существует лишь чисто гипотетически. До сих пор никаких ее прямых признаков не обнаружено, если не считать некоторых земных микробов, способных потреблять метан или, наоборот, выделять его в качестве побочных продуктов своей жизнедеятельности. Однако это, все-таки, наши земные микробы, и биохимия их определяется, прежде всего, водной средой.

На Титане, температура которого колеблется в районе -180 градусов Цельсия, подобное просто невозможно. Здешняя «метановая жизнь» должна быть основана на совершенно иных химических превращениях, а метан (на Земле – наше главное богатство, природный газ), который присутствует на спутнике в жидком виде, должен служить той средой, в которой жизнь появляется и развивается, играя роль воды для земных организмов.

Углеводородные озёра на Титане: радиолокационное изображение с Кассини, 2006 год

В этом смысле обо открытые факта действительно не противоречат гипотезе о наличии на Титане «метановой жизни», но отнюдь не доказывают ее существование. Расчёты, проведенные группой Даррелла Стробеля (Darrell Strobel),а его команда проанализировала данные Cassini, исследуя концентрацию водорода в разных частях атмосферы Титана и на его поверхности. Ранее считалось, что молекулярный водород может образовываться как промежуточный продут разложения метана, происходящего в верхних слоях атмосферы спутника под действием УФ-лучей. И по остальным слоям атмосферы он должен быть распределен почти равномерно.

Но Стробель с коллегами обнаружили градиент концентрации водорода, который свидетельствует о значительном течении молекулярного водорода из верхних слоев атмосферы к поверхности – порядка 1027 молекул в секунду. «Представьте, - поясняет это сам ученый, - будто вы через пожарный шланг выливаете жидкий водород на землю, но он тут же исчезает… Это особенно удивляет, поскольку молекулярный водород в таких условиях очень инертен, к тому же он слишком легок и подвижен». На тамошнем холоде для того, чтобы водород снова прореагировал с ацетиленом с образованием метана, потребовалось бы наличие каких-то мощных катализаторов. Маловероятно и то, что водород в таких количествах накапливается где-то в глубоких расселинах.

Вторая работа проведена командой Роджера Кларка (Roger Clark), которая исследовала, распределение ацетилена в атмосфере Титана. Ожидалось, что все обстоит достаточно ясным образом – в верхних слоях атмосферы воздействие солнечных лучей приводит к разложению метана с образованием ацетилена (и того же водорода). Ацетилен опускается вниз, накапливаясь в обширных «водоемах». Но на деле на поверхности Титана никакого ацетилена в принципе не обнаруживается.

Кроме того, не обнаруживается и признаков воды – зато значительные количества бензола и другого органического вещества, определить которое пока не удалось. Это рисует довольно интересную картину местного пейзажа: твердая основа водного льда, целиком покрытая слоем жидких органических соединений, толщина которого составляет от нескольких миллиметров до куда большей глубины в некоторых местах. Даже в те периоды, когда атмосфера спутника разражается дождем из жидкого метана и этана, которые наполняют обширные низины, они не смывают эту пленку другой органики, и лед остается скрытым.

Ну а что до невозможности обнаружить ацетилен у поверхности Титана, то причина тому может быть и самая что ни на есть банальная. К примеру, что еще в атмосфере его молекулы под действием солнечных лучей или космической радиации претерпевают сложные превращения, формируя более сложные органические соединения.

Д.Планета Венера

Так будет выглядеть Венера с биосферой (по версии Дейна Балларда)

Венера — вторая от Солнца планета Солнечной системы с периодом обращения в 224,7 земных суток. Планета получила своё название в честь Венеры, богини любви из римского пантеона.

Жизнь на Венере

О возможности существования жизни на Венере говорили десятилетиями, но с 1950 года это стало казаться невозможным. Венера находится гораздо ближе к Солнцу, чем Земля, температура её поверхности сильно повышена до +500°С (700 К), а также тот факт, что атмосферное давление в 90 раз выше земного и наличие крайне сильного парникового эффекта, делают жизнь весьма маловероятным явлением. Только в верхних слоях атмосферы, далеко от поверхности планеты, условия удалённо приемлемы для поддержания жизни.

Исторические сведения

В 1870 году британский астроном Ричард Проктор указал на возможность существования жизни на Венере, в трёх районах, близких в экватору, как он предполагал, было чрезмерно жарко, но есть предположения, что формы жизни могут существовать вблизи полюсов планеты. Шведский химик Сванте Аррениус (нобелевский лауреат по химии 1903 года) в 1918 году описал Венеру как планету с пышной растительностью и влажным климатом, где жизнь похожа на ту, что была на Земле в каменноугольный период. Таким образом, в научной фантастике родился термин для описания гипотетических форм жизни на Венере, родиной которых была Венера.

Однако с конца 1950-х годов всё чаще демонстрируются чёткие доказательства наличия экстремального климата на Венере с сильным парниковым эффектом, который обеспечивает здесь температуру около +500°С на поверхности. В атмосфере, содержащей серную кислоту и облачный покров, атмосферное давление у поверхности составляет 90 атмосфер, почти в 100 раз больше, чем на Земле. Это давление примерно равно давлению на глубине более 1000 метров в океанах Земли. В таких условиях шансы на существование жизни на Венере были полностью исключены.

Существование жизни на ранней стадии развития планеты

Таблица температур и атмосферного давления на разных высотах в атмосфере Венеры








Высота
(км)

Температура
(°C)

Атмосферное
давление
(x земного)

0

462

92,10

5

424

66,65

10

385

47,39

15

348

33,04

20

306

22,52

25

264

14,93

30

222

9,851

35

180

5,917

40

143

3,501

45

110

1,979

50

75

1,066

55

27

0,5314

60

-10

0,2357

65

-30

0,09765

70

-43

0,03690

80

-76

0,004760

90

-104

0,0003736

100

-112

0,00002660


В 1997 году астробиолог Дэвид Гринспун опубликовал книгу под названием «Venus Revealed» (Раскрытие Венеры), в которой предположил, что Венера в ранней солнечной системе имела более благоприятный климат, чем позже Земля и Марс. Хотя он не заключил, что земная жизнь зародилась на Венере, но оставил открытой возможность того, что в то время и сейчас на Венере есть углеродные формы жизни. В любом случае не исключено, что спускаемые космические аппараты с Земли замыкают круг, возвращаясь, по иронии судьбы, на Венеру — к истокам возможного зарождения жизни в Солнечной системе.

На раннем этапе становления Солнечной системы на Венере, Земле и Марсе могли существовать первичные «бульоны» из элементов органической жизни. Его теория не исключена как возможная, так как органическое вещество планеты может путешествовать из одной планеты на другую (например на метеоритах). Таким образом, вполне возможно, что если жизнь появилась одновременно на Земле и Венере, может быть «загрязнена» элементами из других миров.

Вероятнее всего наиболее подходящей планетой для жизни была Венера. За 4,5 млрд лет существования Солнца, его тепло постепенно росло. Когда Солнце и планеты были молоды, интенсивность солнечного света составляла примерно 70 % от текущего значения, увеличиваясь почти линейно на 1 % каждые 110 миллионов лет. То есть, на Земле и на Марсе, вероятно, были слишком низкие температуры, слишком холодный климат для жизни, как мы знаем. Однако на Венере могли быть умеренные температуры. Если жизнь на Венере была сформирована после земной, то она должна быть «загрязнена», потому что недостаёт звеньев исследовании, а жизнь на Земле появилась примерно 3,8 млрд лет назад. Когда Солнце начало излучать больше тепла, воздействие парникового эффекта на Венере стало сильнее, в результате этого жизни приходилось адаптироваться. Эта теория была минимальной, основанной на научных фактах. Ответ окончательно прояснится будущими миссиями на Венеру.

Последние исследования

Исследования атмосферы Венеры показали, что в ней поддерживается природный баланс химических оснований. В анализе данных миссии «Венера», «Пионер-Венус» и «Магеллан» были обнаружены сероводород и диоксид серы, а также, в верхних слоях атмосферы, карбонильный сульфид (OCS). Первые два из них — газы, которые реагируют друг с другом, это означает, что что-то должно являться их источником пополнения. Кроме того, сероуглерод находится в значительных количествах, что затрудняло бы производство неорганических веществ. На Земле это соединение будет считаться «верным признаком жизни». Также есть один факт, который часто упускается из виду, что одна из первых станций «Венера» обнаружила большое количество хлора под облачным покровом.

Было предположено, что микробы, если таковые имеются, могли бы использовать ультрафиолетовое излучение Солнца, как источник энергии, которые могут быть объяснением наблюдаемых тёмных линий на фотографиях планеты сделанных в УФ-диапазоне. Крупные частицы и несферические облака были также обнаружены у кромки облачного покрова. Их состав остаётся невыясненным.

Несмотря на единодушие в отношении враждебности нынешних условий на Венере для возникновения или поддержания жизни, в последние годы были предложены две гипотезы, касающиеся вариантов существования жизни на Венере.

Существование жизни на высоких слоях облаков

Парниковый эффект на Венере.

Некоторые учёные предполагают присутствие некоторых форм жизни в облаках Венеры подобно бактериям, которые были обнаружены в облаках на Земле. Микробы в плотной, облачной атмосфере могут быть защищены от солнечного излучения соединениями серы в воздухе.

В результате анализа данных, полученных зондами «Венера», «Пионер—Венера» и «Магеллан», в верхних слоях атмосферы обнаружены сероводород (H2S) и сернистый газ (SO2), а также сульфид карбонила (O=C=S). Первые два газа вступают в реакцию друг с другом, а это означает, что должен существовать постоянный источник этих газов. Кроме того, карбонильный сульфид примечателен тем, что его трудно воспроизвести только неорганическим путём. Он производится за счёт эффективных катализаторов, требующих больших объёмов веществ разного химического состава. На Земле таковыми катализаторами являются микроорганизмы. Кроме того, часто упускается из виду тот факт, что спускаемый аппарат «Венера-12» обнаружил присутствие хлора на высотах 45—60 км, а аэростатные зонды «Вега-1 и -2» подтвердили это. Было высказано предположение, что микроорганизмы на этом уровне могут поглощать ультрафиолетовый свет Солнца, используя его в качестве источника энергии. Это могло бы являться объяснением тёмных пятен, видимых на ультрафиолетовых изображениях планеты. Большое, несферическое облако частиц было также обнаружено в слоях облаков. Их состав пока неизвестен. Было также отмечено, что атмосфера содержит мало СО, несмотря на интенсивность света, падающего солнечного излучения и парниковой силы. До сих пор неизвестно, почему СО превращается в СО2.

В 2002 году на Европейской конференции по астробиологии в Граце двое учёных, Дирк Шульце-Макуш и Луи Ирвин, предположили наличие в облаках Венеры химических веществ, которые могут быть результатом деятельности живых организмов.

Одним из объяснений этому является существование в облаках микробной формы жизни (экстремофилы архейской структуры) с метаболизмом, полностью отличающимся от всего, что мы знаем на Земле, на основе СО и SO2. Как это могло произойти? Гипотеза, которая допустила бы развитие этой жизни, объясняет, что в далёком прошлом температура на Венере была гораздо более низкой. Из моделей эволюции звёзд можно рассчитать, что в первые моменты жизни на Земле Солнце испускало 70 % сегодняшней энергии и температура равновесия на Земле была −41°С. Со временем Солнце становилось более горячим. Таким образом представляется возможным, учитывая наши сегодняшние знания, наличие длительного периода больших океанов, где могла возникнуть жизнь. Когда солнечная активность начала увеличиваться, постепенно всё больше тепла стало проникать в атмосферу Венеры, не защищённую магнитным полем. Воздействие выбросов было бы очень сильным, но, возможно, всё происходило достаточно медленно, чтобы позволить древним формам жизни приспособиться.

Ещё одной проблемой считалось то, что на Венере нет ничего похожего на озоновый слой, чтобы остановить опасный поток УФ лучей от Солнца. Чтобы защититься от него, живые организмы должны быть адаптированы. Однако в 2011 году озоновый слой на Венере был обнаружен: он расположен на высоте около 100 километров.

Ясно, что эта теория остаётся доказанной не целиком. Будущие миссии на Венеру смогут подтвердить или опровергнуть эту теорию.

Существование жизни на поверхности

В январе 2012 года о возможном наличии живых существ на поверхности Венеры заявил главный научный сотрудник Института космических исследований РАН Л В. Ксанфомалити. Во время изучения данных, переданных советскими аппаратами в 1970-е и 1980-е годы, его внимание привлекли девять фотографий, полученные аппаратами Венера-13 и Венера-14. На них присутствуют некие объекты, которые появляются и исчезают на серии последовательных снимков. Среди них: «диск», «чёрный лоскут» и «скорпион». К примеру, объект «скорпион» появляется на фотографии спустя 90 минут после включения камеры и через 26 минут исчезает, оставив после себя канавку в грунте. Ксанфомалити считает, что во время посадки, модуль создал сильный шум и «обитатели» покинули место посадки, а спустя некоторое время, когда все утихло, они вернулись. Этим он объясняет 90-минутную задержу в появлении. В следующей публикации Ксанфомалити приводит результаты обработки фотоснимков, полученных аппаратом Венера-9, и на них также находит подозрительные объекты, гипотетически отождествляемые им с живыми организмами иной, чем на Земле, формы жизни.

Гипотеза Ксанфомалити вызвала дискуссию среди специалистов. Представители НАСА заявили, что «диск» на фото — это отвалившаяся при посадке крышка от объектива, а другие объекты — это всего лишь шумы, усиленные при копировании и увеличении снимка. Ещё один исследователь, Дон Митчел, объясняет отмеченные Ксанфомалити аномалии как артефакты системы телеметрии и эффекты от изменения освещения с течением времени. С другой стороны, публикации Ксанфомалити получили положительные отзывы от создателей телеметрической системы аппаратов «Венера» А. С. Селиванова и Ю. М. Гекина и от специалиста по молекулярной биологии А. С. Спирина.

Е.Луна.

Большинство ученых считают Луну абсолютно “мертвой” (отсутствие атмосферы, различные излучения, не встречающие препятствия на пути к поверхности, большие перепады температуры и т. д.). Однако некоторые формы могут жить в тени кратеров, особенно если, как показывают последние наблюдения и исследования, там все еще протекает вулканическая деятельность с выделением тепла, газов и водяных паров. Вполне возможно, что, если жизни на Луне нет, то она может быть уже заражена земной жизнью после прилунения на ней космических аппаратов и кораблей и, возможно, метеоритами, если они могут явиться переносчиками жизни.





9.Поиски планет вне Солнечной системы.


А.Понятие экзопланета.

Экзоплане́та (др.греч εξω, exo — вне, снаружи), или внесолнечная планета — планета, обращающаяся вокруг звезды за пределами Солнечной системы. Планеты чрезвычайно малы и тусклы по сравнению со звёздами, а сами звёзды находятся далеко от Солнца (ближайшая — на расстоянии 4,22 световых года). Поэтому долгое время задача обнаружения планет возле других звёзд была неразрешимой, первые экзопланеты были обнаружены в конце 1980-х годов. Сейчас такие планеты стали открывать благодаря усовершенствованным научным методам, зачастую на пределе их возможностей.

На 9 ноября 2014 года достоверно подтверждено существование 1849 экзопланет в 1160 планетных системах, из которых в 471 имеется более одной планеты. Следует отметить, что количество надёжных кандидатов в экзопланеты значительно больше. Так, по проекту «Кеплер» на май 2013 года числилось 2740 кандидатов, однако для получения статуса подтверждённых требуется повторная регистрация таких планет с помощью наземных телескопов.

Общее количество экзопланет в галактике Млечный Путь в настоящее время составляет от 100 миллиардов, из которых ~ от 5 до 20 миллиардов, возможно, являются «землеподобными». Также, согласно текущим оценкам, около 34 процентов солнцеподобных звёзд имеют в обитаемой зоне планеты, сравнимые с Землёй.

Подавляющее большинство открытых экзопланет обнаружено с использованием различных непрямых методик детектирования, а не визуального наблюдения. Большинство известных экзопланет — газовые гиганты и более походят на Юпитер, чем на Землю. Очевидно, это объясняется ограниченностью методов обнаружения (легче обнаружить короткопериодичные массивные планеты).

История открытий:





Количество экзопланет, открытых разными способами:

     Радионаблюдение пульсаров      Метод радиальных скоростей      Транзитный метод      Метод синхронизации

     Визуальное наблюдение      Гравитационное линзирование      Астрометрический метод




Экзопланета (газовый гигант) в представлении художника



Гипотетически существующий тип экзопланет — планета-океан с двумя спутниками в представлении художника



Исторически первым заявлением о возможности существования планетной системы у другой звезды было сообщение капитана Джейкоба (Capt. W. S. Jacob), астронома Мадрасской обсерватории (East India Company’s Madras Observatory), сделанное в 1855 году. В нём сообщалось о «высокой вероятности» существования «планетарного тела» в двойной системе 70 Змееносца. Позже, в 1890-х годах, астроном Томас Дж. Дж Си из Чикагского университета и Военно-Морская обсерватория США подтвердили наличие в системе 70 Змееносца несветящего тела (невидимого спутника) с периодом обращения в 36 лет, однако расчёты Ф. Р. Мультона опровергают подтверждения, выполненные Си, доказывая неустойчивость подобной системы. Поэтому на данный момент (2014 год) существование планетной системы у звезды 70 Змееносца не признаётся наукой.

Первые попытки найти планеты вне Солнечной системы были связаны с наблюдениями за положением близких звёзд. Ещё в 1916 году Эдуард Барнард обнаружил красную звездочку, которая «быстро» смещалась по небу относительно других звёзд. Астрономы назвали её Летящей звездой Барнарда. Это одна из ближайших к нам звёзд, с массой в семь раз меньше солнечной. Исходя из этого, влияние на неё потенциальных планет должно было быть заметным. В начале 1960-х годов Питер Ван де Камп объявил, что открыл у неё спутник массой с Юпитер. Однако Дж. Гейтвуд в 1973 году определил, что звезда Барнарда движется без колебаний и, следовательно, массивных планет не имеет.

В конце 1980-х годов многие группы астрономов начали систематическое измерение скоростей ближайших к Солнцу звёзд, ведя специальный поиск экзопланет с помощью высокоточных спектрометров.

Впервые внесолнечная планета была найдена канадцами Б. Кэмпбеллом, Г. Уолкером и С. Янгом в 1988 году у оранжевого субгиганта Гамма Цефея A, но подтверждена лишь в 2002 году.В 1989 году сверхмассивная планета (или коричневый карлик) была найдена Д. Латамом около звезды HD 114762 A. Однако её планетный статус был подтверждён только в 1999 году.

Экзопланеты у нейтронной звезды PSR 1257+12 были обнаружены в 1991 году, их открыл астроном Александр Вольшчан. Эти планеты были признаны вторичными, возникшими уже после взрыва сверхновой.

В 1995 году астрономы Мишель Майор (Michel Mayor) и Дидье Кело (англ.)русск. (Didier Queloz) с помощью сверхточного спектрометра обнаружили покачивание звезды 51 Пегаса с периодом 4,23 сут. Планета, вызывающая покачивания, напоминает Юпитер, но находится в непосредственной близости от светила. В среде астрономов планеты этого типа называют «горячими юпитерами».

В дальнейшем путём измерения лучевой скорости звёзд и поиска их периодического доплеровского изменения (метод Доплера) было обнаружено несколько сотен экзопланет.

В августе 2004 года в системе звезды μ Жертвенника была обнаружена первая планета—горячий нептун. Она обращается вокруг светила за 9,55 суток, на расстоянии 0,09 а. е., температура на поверхности ~ 900 K (+626 °C), масса ~ 14 масс Земли.

Первая сверхземля, обращающаяся вокруг нормальной звезды (а не пульсара), была обнаружена в 2005 году около звезды Глизе 876. Её масса — 7,5 масс Земли.

В 2004 году было получено первое изображение (в инфракрасных лучах) кандидата в экзопланеты у коричневого карлика 2M1207.

13 ноября 2008 года впервые удалось получить изображение сразу целой планетной системы — снимок трёх планет, обращающихся вокруг звезды HR 8799 в созвездии Пегаса. Это первая планетная система, открытая у горячей белой звезды раннего спектрального класса (А5). Все открытые ранее планетные системы (за исключением планет у пульсаров) были обнаружены вокруг звёзд более поздних классов (F-M).

13 ноября 2008 года также впервые удалось обнаружить планету Фомальгаут b вокруг звезды Фомальгаут путём прямых наблюдений.

В 2011 году Дэвид Беннетт из Университета Нотр-Дам (Индиана, США) объявил на основе наблюдений 2006—2007 годов на 1,8-метровом телескопе Университетской обсерватории Маунт-Джон в Новой Зеландии об открытии с помощью метода микролинзирования 10 одиночных юпитероподобных экзопланет. Правда, две из них могут быть высокоорбитальными спутниками ближайших к ним звёзд.

В сентябре 2011 года было объявлено об открытии двух экзопланет KIC 10905746 b и KIC 6185331 b любителями астрономии в рамках проекта Planet Hunters, предназначенного для анализа данных собранных телескопом «Кеплер». При этом упоминалось о 10 кандидатах в планеты, но на тот момент только два из них с достаточной степенью уверенности определялись учёными как экзопланеты. Планеты были найдены добровольными участниками проекта среди данных, которые профессиональные астрономы по тем или иным причинам отсеяли и если бы не помощь добровольцев, то эти планеты вероятно остались бы неоткрытыми.

5 декабря 2011 года телескопом Кеплер была обнаружена первая сверхземля в обитаемой зоне — Kepler-22 b.

20 декабря 2011 года телескопом Кеплер у звезды Кеплер-20 были обнаружены первые экзопланеты размером с Землю и меньше — Kepler-20 e (радиусом 0,87 земного и массой от 0,39 до 1,67 масс Земли) и Kepler-20 f (0,045 массы Юпитера и 1,03 радиуса Земли).

22 февраля 2012 года учёные из Гарвард-Смитсоновского центра астрофизики на расстоянии 40 световых лет от Земли открыли первую экзопланету из воды — GJ 1214 b. Период обращения планеты вокруг звезды — красного карлика — 38 часов, расстояние составляет около 2 миллионов километров. Температура на поверхности планеты составляет примерно 230 °C .Экзопланет множество и учёные делят их на отдельные классы. Рассмотрим те из них на которых возможно существование хотя бы примитивных форм внеземной жизни.

Б.Планеты класса Сверхземля.

Сверхземля — класс планет, масса которых превышает массу Земли, но значительно меньше массы газовых гигантов. Обычно под сверхземлёй понимают каменную планету земного типа (с массой 1-10 масс Земли), состоящую из каменных пород и по строению сходной с Землёй. Планет этого типа в Солнечной системе нет. Планеты этого типа были обнаружены сравнительно недавно в других звёздных системах.


Изображение двух гипотетических суперземель при сравнении последних с Землёй




Первая планета этого типа была обнаружена возле пульсара PSR B1257+12 в 1991 г., это одновременно и первые открытые экзопланеты в истории. Две планеты, обращающиеся вокруг нейтронной звезды, имели массу в 4 массы Земли, что явно было слишком мало для того, чтобы быть газовыми гигантами.

Каждый год открываются новые планеты класса сверхземля и если Сверхземля окажется в обитаемой зоне, то есть на её поверхности найдётся жидкая вода, она будет довольно похожа на Землю по многим другим параметрам. И более того, возможно, что для поддержания жизни такие Сверхземли куда более приспособлены, чем даже наша собственная планета.

Так считает Димитар Сасселов (Dimitar Sasselov), астроном из Гарварда, один из группы учёных, впервые составившей модель таких планет, описавшей их расчётную структуру, да собственно и предложившую сам термин super-Earth. Профессор Сасселов – глава междисциплинарного гарвардского проекта Origins of Life Initiative, над которым работают как астрофизики и космологи, так и химики, биологи, представители других областей науки. Цель – разобраться с рождением и эволюцией планет и закономерностями появления жизни на них,лежащие в пригодной для жизни зоне, точнее — на самых её границах

Параметры Сверхземель не на много отличаются от наших.

По диаметру они находятся примерно в диапазоне от 1 до 2 диаметров нашего родного дома. Сила тяжести на поверхности больше, однако не намного – до трёх раз. С трудом, но это выдержит даже человек, не говоря уж об организмах, родившихся и эволюционировавших в таком мире.

Большая гравитация означает, что Сверхземле легче удержать плотную атмосферу и такой разреженной, как на Марсе, «воздушной» оболочки у Суперземли не будет.

Зато у Сверхземли должна быть мощная тектоника плит, сильнее, чем даже земная. А тектоника плит, к примеру, оказывает колоссальное влияние на температуру планеты, а значит, и на климат. Хотя сопровождающий движение материков вулканизм, к примеру, приводит иногда к катастрофическим последствиям, без тектоники вовсе жизнь не могла бы развиваться, поскольку необходимый для неё углерод был бы похоронен в недрах планеты. А без этого элемента (точнее, без его соединения – углекислого газа) не будет фотосинтеза – энергетической основы для всей пищевой цепи биосферы.





Что касается условий необходимых для возникновения и обитания живых организмов, то тут многое зависит не только от близости к звезде и от её спектрального типа, но и от доставшегося планете набора веществ. В этом плане астрономам ещё только предстоит изучение уже открытых миров Сверхземель (иллюстрация с сайта wikipedia.org).


В общем, выходит, что по ряду параметров Сверхземли могут оказаться для жизни даже милее нашего мира. Тут, впрочем, существует масса неисследованных ещё тонкостей. Так, в одной научной работе обращено внимание на железное ядро Сверхземель, вернее, на тот факт, что не все такие миры могли бы обзавестиcь оным. А ядро генерирует защитное магнитное поле, без которого жизни на поверхности планеты практически не возможна. Версия о благоприятных Сверхземлях – красива и логична. И она может объяснить парадокс Ферми — почему, если число пригодных для жизни миров и вправду очень велико, мы пока не дождались контакта?

Если другие цивилизации в Галактике развивались преимущественно на Сверхземлях, а не на планетах с такой же массой, как у нашей, то эти цивилизации, что логично, искали бы братьев по разуму на мирах, похожих на свой.

Скромную по весу Землю, на которой, как мы знаем, жизни едва ли не приходил конец (то от глобального оледенения, то от удара астероида и последующих безобразий, инопланетяне просто не рассматривают как надёжного кандидата на обитаемость.

Или всё может быть проще: «Сверхземли начали формироваться в Галактике сравнительно недавно, и потому немногим техническим цивилизациям удалось выйти в космос», — говорит Сасселов. То есть попросту другие разумные обитатели Млечного Пути, если они есть, могут быть столь же молоды, как и мы сами. И точно так же они ещё, быть может, только решают загадку – где в Галактике самые благоприятные условия для жизни и почему им посчастливилось родиться именно на их плане

. Основные надежды учёные связывают с планетами, обращающимися вокруг своего затухающего солнца, получившего название Gliese 581. Одна из них Gliese 581 c открыта в 2010 году. Но на ней возможен парниковый эффект, вследствие которого данная планета может оказаться несколько перегретой, но зато её соседка по системе — более холодная планета Gliese 581 d — в силу того же эффекта может попадать в обитаемую зону. Позже была открыта планета OGLE-2005-BLG-390Lb также принадлежит к этой звёздной системе, относящаяся к классу сверхземель. Она всего в 5,5 раз больше нашей Земли по массе (их диаметры, более близки).Она обращается вокруг, за 13 дней.

OGLE-2005-BLG-390Lb меньше и холоднее нашего Солнца, поэтому температура на планете примерно соответствует земной. При этом она находится в 14 раз ближе к своему светилу, чем Земля к Солнцу.

"Мы подсчитали, что средняя температура на этой "сверхземле" - между 0 и 40 градусами по Цельсию, поэтому вода может быть жидкой, - говорит один из авторов открытия Стефан Удри из Женевской обсерватории. - Более того, ее радиус составляет примерно полтора радиуса Земли, и на основе моделирования мы предполагаем, что планета - либо каменистая, как Земля, либо она покрыта океанами".

"Вода в жидком виде - это основа жизни в известных нам формах", - добавляет Хавьер Делфоссе из университета Гренобля. По мнению этого эксперта, обнаруженная планета может стать целью космических экспедиций по поиску внеземной жизни.

Профессор Майкл Боде из Ливерпульского университета Джона Мура, глава проекта RoboNet, отметил: «Это самая подобная Земле планета вне Солнечной системы, если говорить о массе и расстоянии до родительской звезды».




(Планета OGLE-2005-BLG-390Lb, которая

обращается вокруг красного карлика.)


Планета HD 85512b стала ещё одним открытым миром, пригодным для жизни.

В. «HD 85512 b — экзопланета, обращающаяся вокруг оранжевого карлика в

созвездии Паруса.





Планета HD 85512 b в представлении художника

Характеристики

HD 85512 b находится в 36 световых годах от Солнца. Планета в 3,6 раз массивнее Земли и является самой маленькой из открытых методом радиально-лучевых скоростей, а также второй открытой планетой, находящейся в зоне обитания. Открытие сделано в августе 2011 года с помощью спектрографа HARPS, установленного на 3,6-метровом телескопе обсерватории Ла-Силья в Чили. Равновесная температура поверхности планеты составляет около 25 °C при альбедо 0,3. В случае, если планета имеет атмосферу, подобную земной, с парниковым эффектом, то приповерхностная температура составит 78 °C. Сила тяжести планеты в 1,4 раза выше земной, велика вероятность наличия жидкой воды (в зависимости от свойств атмосферы планеты).

Материнская звезда HD 85512 b светит слабее Солнца в 8 раз, при этом расстояние от планеты до её звезды составляет примерно 0.26 а.е.

Планета считалась потенциально обитаемой.

Г. Межзвездные обитаемые планеты.

Межзвёздные обитаемые миры в представлении художника


Казалось бы, не вписывается в рамки исследований идея о жизни на планетах-скитальцах, потерянных своими звездами; но даже эта идея сегодня обсуждается учёными..
Речь идет о том, что одинокие планеты могут «бродить» в межзвездном пространстве. К примеру, не раз обсуждалась идея, состоящая в том, что значительная доля скрытой (невидимой) массы Галактики могла бы быть заключена в межзвездных планетах-гигантах типа Юпитера. В 1999 году американский астроном Дэйв Стивенсон предположил, что помимо «юпитеров» в пространстве между звездами могут встречаться и планеты земного типа. Стивенсон считает, что на заре существования Солнечной системы в ней могла быть дюжина землеподобных планет, движущихся по вытянутым орбитам, пересекающим орбиту Юпитера. У таких планет было два варианта эволюции: либо столкнуться с Юпитером, либо после тесного сближения с ним навсегда покинуть Солнечную систему. Согласно законам небесной механики, второй вариант осуществлялся чаще.
Какова же судьба потерянных планет? Стивенсон считает, что планеты-скитальцы вполне могут быть обитаемыми. К моменту вылета из своей системы такая планета могла приобрести плотную атмосферу из молекулярного водорода, способную сохранять ее внутреннее тепло, выделяющееся при распаде радиоактивных элементов, и поддерживать на поверхности температуру и давление, допускающие существование жидкой воды, а где есть вода, там возможна и жизнь. Конечно, речь может идти только о наиболее примитивных формах жизни.

Группа американских ученых из университета Чикаго полагает, что планеты, выброшенные из планетной системы в межзвездное пространство своими более массивными собратьями, могут ещё долгое время оставаться пригодными для жизни.
Авторы исследования, Дориан Эббот и Эрик Швитцер решили выяснить, может ли на такой планете, лишенной внешних источников тепла и света, все-таки сохраниться жизнь.
Главным критерием возможности жизни на планете считается наличие на ее поверхности воды в жидком состоянии.
С другой стороны, хорошо известна гипотеза, гласящая, что жидкая вода может сохраняться в океанах планет под толстым слоем льда и одеялом метановой атмосферы над ним.
Эббот и Швитцер решили выяснить, может ли подобный океан существовать на планете-изгое, и какой должна быть планета, способная сохранить его без притока энергии извне.
Для расчетов они взяли гипотетическое небесное тело, сходное с Землей по величине и по составу. Единственным источником тепла для него может быть распад тяжелых элементов в ее мантии.
Поток тепла на поверхности такой планеты, согласно расчетам, должен составить 0,087 ватта на квадратный метр. Сроки полураспада тория и урана могут обеспечить существование такого океана в течение срока от 1 до 5 миллиардов лет. Масса планеты-изгоя при этом должна составлять более 3,5 массы Земли.
Однако если доля воды в массе планеты будет очень высока, и она будет обладать мощной атмосферой, ее масса может равняться лишь около 0,3 земной массы.
Согласно подсчетам ученых, такая планета-Степной волк, названная авторами в честь героя одноименного романа Германа Гессе, может быть замечена с Земли с помощью существующих технологий, если она появится на расстоянии менее 1000 астрономических единиц или 0,01 световых лет от Земли.
"Если живые организмы могут возникнуть и существовать на такой планете, то жизнь действительно вездесуща во Вселенной", - пишут авторы статьи.



Д.Инструмент изучения экзопланет

Наземные обсерватории Ведущие наблюдение транзитным методом
  • SuperWASP — самый успешный наземный обзор. Более 70 экзопланет найденных транзитным методом на 2012. Состоит из 2-х обсерваторий: SuperWASP-North в обсерватории Роке де лос Мучачос на острове Пальма (Канарские острова) и SuperWASP-South, находящейся в Южноафриканской астрономической обсерватории). Каждая состоит из 8 широкоугольных автоматических телескопов с апертурой 111 мм.

  • Проект HATNet — сеть 6 автоматических телескопов с широким полем зрения, 4 из которых расположено на обсерватории им. Фреда Лоуренса в Аризоне, а 2 — на территории Смитсоновской астрофизической обсерватории на Гавайях. Открыто 33 экзопланеты (на начало 2012)

Ведущие наблюдение методом лучевых скоростей (доплеровским)
  • HARPS — высокоточный спектрограф, установленный в 2002 году на 3,6-метровом телескопе в обсерватории Ла-Силья в Чили. Наблюдение ведётся методом лучевых скоростей. Часть ESO

  • Обсерватория Кека — обсерватория из 2-х крупнейших в мире зеркальных телескопов. Диаметр первичных зеркал (всего их три, в каждом из телескопов) которых составляет 10 метров.


Астрономические спутники

COROT (ЕКА) — специализированный 30-сантиметровый орбитальный космический телескоп, снимающий кривые блеска многих звёзд в момент прохождения перед ними планет. Запущен 27 декабря 2006 года. Предполагалось с его помощью обнаружить десятки планет земного типа. К марту 2010 года COROT открыл семь экзопланет и один коричневый карлик.

«Кеплер» (НАСА) — космический телескоп системы Шмидта с диаметром зеркала 0,95 м, способный одновременно отслеживать 100 тыс. звёзд. Запущен 7 марта 2009 года. Планировалось обнаружить около 50 планет, размерами идентичными Земле, и порядка 600 планет, в 2,2 раза превосходящих Землю по размеру. «Кеплер» обращается вокруг Солнца по орбите радиусом в одну астрономическую единицу. Расчётный срок эксплуатации был определен в 3,5 года. Позднее было объявлено о продлении миссии до 2016 года, однако в мае 2013 года телескоп вышел из строя. К этому времени «Кеплер» достоверно открыл 132 экзопланеты. Телескоп отмечает едва заметные спады в блеске звёзд, вызываемые проходящими перед ними планетами.

Но как выглядят эти планеты? До сих пор изобразить их пытались только художники, однако теперь группа под руководством профессора Абеля Мендеса из Лаборатории изучения обитаемости планет в университете Пуэрто-Рико (территория Пуэрто-Рико находится под управлением США) создала программу, которая генерирует фотореалистичные изображения далёких планет.


Е.Программа «Научный визуализатор экзопланет»

Программа «Научный визуализатор экзопланет» берёт данные о планете - её массу, расстояние от звезды и др. - и комбинирует их с правдоподобными предположениями об океанах, суше и атмосфере. Компьютер позволяет реконструировать как планеты земного типа и «субземли» ещё меньшего размера), состоящие в основном из горных пород и жидкости, так и газовые гиганты, подобные Юпитеру.

Хотя программа воссоздаёт вид любой планеты, в первую очередь она предназначена для отрисовки миров, которые могут быть обитаемы. На основе этой программы были смоделированы Аурелия и Голубая Луна (анг.) Aurelia and Blue Moon) —- гипотетические примеры планеты и луны, на которых могла бы возникнуть внеземная жизнь. Проект явился результатом плодотворного сотрудничества телекомпании Blue Wave Productions Ltd. и группы американских и британских ученых, работавших по заказу National Geographic Channel. Чтобы представить наиболее вероятные условия для возникновения внеземной жизни, и возможные пути её развития, ученые использовали комбинацию из теории аккреции и знаний из области ксенобиологии и климатологии.

Первые результаты работы были представлены в телевизионной передаче Alien Worlds, состоящей из двух частей, и впервые вышедшей в эфир на британском канале Channel 4 в 2005 году.

Первая часть передачи посвящена Аурелии, воображаемой землеподобной экзопланете, вращающейся по орбите вокруг красного карлика, который находится в нашей локальной зоне галактики Млечный Путь. Гипотетическая Аурелия очень сильно похожа на обнаруженные экзопланеты Gliese 581 g и Gliese 581 d.

Вторая часть передачи посвящается луне, названной Голубая Луна, и находящейся на орбите вокруг газового гиганта в системе двойной звезды. В свою очередь, Голубая Луна может оказаться похожей на две другие экзопланеты — HD 28185 b и 55 Cancri f.

Аурелия




Гипотетическое изображение Аурелии.

















Учёные создали модель экзопланеты и описали её существование , начиная от стадии протопланетарного диска, и заканчивая её окончательной гибелью. По мнению учёных планета в процесс формирования всё же смогла удержать атмосферу, хотя, и с очень необычными, по земным меркам, результатами. Она повёрнута к своему солнцу всегда одной стороной, поэтому половина Аурелии всегда пребывает в вечном мраке и никогда не выходит из ледникового периода, а на другой половине, в той зоне планеты, что обращена прямо к солнцу, буйствует гигантский непрекращающийся ураган с постоянными обильными ливнями. В промежутке между этими двумя зонами и находится место, относительно пригодное для жизни.

Упомянутый ураган создаёт в местном океане огромные волны В обитаемой зоне планеты в прибрежной зоне имеется хорошо развитая сеть речных дельт и заболоченных участков, в связи с выпадением дождей, приносимых ураганом. . В них обитают бактерии и одноклеточные водоросли.

На конечном этапе моделирования Аурелии были предприняты попытки создать формы жизни, основываясь на земных эволюционных моделях и принципах функционирования и развития экосистем. Предположения ученых включали в себя теорию о том, что долгое время жизни красного карлика дает возможность для развития и эволюционирования

жизни в более широких пределах, нежели на Земле.

Жизненные формы Аурелии разнообразны и имеют множество самых разных особенностей и приспособлений к местным условиям обитания

Голубая Луна




Гипотетическое изображение Голубой Луны.


Голубая Луна (англ. Blue Moon) — вымышленный спутник планеты, практически полностью покрытый водой и имеющий очень плотную атмосферу, теоретически позволяющую летать существам размером с земного кита. Голубая Луна, по мнению её создателей, спутник планеты типа Юпитера, достаточно холодной, чтобы иметь в атмосфере дождевые облака. И планета, и спутник расположены в системе двойной звезды.

Голубая Луна по размеру должна быть сравнима с Землей, но, согласно модели, имеет атмосферное давление втрое выше, чем земное.

Характерной особенностью этой моделируемой луны может явиться отсутствие полярных ледяных шапок: плотная атмосфера и покрывающий поверхность океан должны уменьшать колебания температуры. Из космоса можно было бы наблюдать зеленоватую дымку на поверхности, создаваемую огромным числом плавающих в воде и летающих в воздухе полотнищ мхов и водорослей.

Более плотная, нежели чем на Земле, атмосфера могла бы позволять держаться в воздухе более массивным существам. Например, можно было бы представить себе «небесного кита» (англ. Skywhales), огромного китоподобного организма, предки которого покинули океан, чтобы освоить воздушные просторы. Избыток кислорода в атмосфере, теоретически, приводит к повышению силы мышц, и эти существа, с размахом крыльев, достигающим 10 метров, всю свою жизнь проводят в воздухе, питаясь уже упомянутыми выше мхами и водорослями. Стоит отметить, что в данном случае переход от плавающих организмов к летающим произошел бы очень резко, в один эволюционный скачок.

Высокое содержание кислорода в атмосфере (до 30 %) должно было бы привести к частым спонтанным самовозгораниям во время гроз. Уровень углекислого газа в этом случае также должен быть повышен, примерно в 30 раз по сравнению с земным, что, в свою очередь, может привести к повышению температуры воздуха и насыщению его водяными парами (парниковый эффект). Как и земная Луна, Голубая Луна должна так же находится в орбитальном резонансе, и всегда повернута одной стороной к своей планете.

Период обращения Голубой Луны вокруг газового гиганта, по допущению модели, составляет 10 суток, из которых лунный день длится 5 суток, и столько же — лунная ночь. Долгие дни и ночи должны теоретически привести к возникновению сильных межполушарных воздушных потоков, которые, в дополнение к плотной атмосфере и повышенному содержанию кислорода, способны были бы помочь воздушным формам жизни поддерживать свой непрерывный полёт.

«Небесные киты», согласно модели, могут служить пищей для вымышленных существ, насекомовидных «капюшонных охотников» (англ. caped stalkers), местных хищников, живущих колониями. У «капюшонных охотников», теоретически, должно иметься четкое разделение ролей между разными специализированными особями, как в земных муравейниках или ульях. Разведчики, обнаружившие небесных китов, могли бы помечать их особым запахом, и возвращаться назад в гнездо. Рабочие особи, собирающиеся в большой рой, после нахождения кита, помеченного разведчиками, должны вынудить его снизиться, после — убить и доставить пищу в колонию. И, наконец, во главе колонии должна стоять королева, откладывающая яйца, из которых появляются новые «сталкеры». Образ жизни данного вида более всего похож на существование гнезд земных шершней.

В свою очередь, «охотники» сами должны являться жертвой для «пагоды» (англ. Pagoda), вымышленного растения, чьи ветви-щупальца покрыты призрачными ловчими сетями. Когда «капюшонный охотник» попадает в эти сети, пагода, используя ветви-щупальца, поднимает спелёнутую жертву наверх, к ротовому отверстию, чтобы растворить в кислоте примитивного желудка.

«Гигантские воспаритли» (англ. giant kites), как и «небесные киты», могли бы парить над пологом леса. Внешне они, по замыслу учёных, напоминают парашют, и могут, теоретически, достигать 5 метров в диаметре. Своеобразные «страховочные фалы» позволяли бы им контролировать высоту полета, а щупальца, похожие на щупальца земных медуз — выхватывать личинок жуков-вертолётов (англ. Helibug) из воды. Последние вымышленные создания примечательны тем, что, согласно задумке участников проекта «Голубая Луна», имеют трилатеральную симметрию тела: три ноги, три глаза, три крыла, три челюсти, и три языка.

До 70 % суши Голубой Луны должно быть покрыто двумя основными типами растительности — «Пагодостениями» (англ. pagoda plants), и «деревья-воздушные шары» (англ. balloon tree). «Пагодостениями» могут соединяться между собой, и это позволило бы их зарослям достигать высоты более 200 метров. Их полые листья могли бы собирать дождевую воду (что является одним из вероятных механизмов приспособляемости. С точки зрения физиологии растений представляется невозможным доставить воду на такую высоту с поверхности земли лишь силой осмоса).






















Заключение.


Если мы о чём-то не знаем,

это не значит, что оно не существует.


При написании данного реферата, моей главной задачей было выяснить, насколько правдивы и научно обоснованы современные теории доказательств существования жизни вне нашей планеты.

В своей работе я подробно рассмотрела вопросы наличия внеземных форм жизни во вселенной, в частности вероятность существования внеземных цивилизаций и необходимые условия для их возникновения, возможные средства связи с инопланетными формами жизни, методы их обнаружения, условия необходимые для возникновения жизни вне Земли, а также возможность существования жизни на планетах Солнечной системы - Марсе и Венере ,спутниках Юпитера - Европе и Энцеладе, Титане –спутнике Сатурна, а так же вероятность нахождения возможных следов жизни на планетах в нашей галактике и других мирах. Стоит отдельно отметить, что вопрос о возможности наличия жизни на спутнике Земли – Луне, рассматривался мной очень кратко в виду того, что при её наличии уже были бы обнаружены доказательства ее существования.

Хотя ни одна из рассмотренных теорий не может привести абсолютно неоспоримых доказательств существования внеземных форм жизни, человечеству известны несколько научных фактов, косвенно это подтверждающих:


  • Еще в 1976 году в образцах породы, взятой с поверхности Марса, были найдены вещества, похожие на отходы жизнедеятельности живых организмов. Повторные пробы не подтвердили результат.

  • В 1977 году в Университете Огайо (Ohio State University) радиотелескоп зафиксировал неопознанный сигнал из созвездия Стрельца, длящийся 37 секунд. Источник сигнала, прошедшего через 220 миллионов световых лет, неизвестен.

  • В 1984 году в Антарктиде был найден метеорит, прилетевший с Марса, на котором были обнаружены следы нанобактерий. Внеземное происхождение этих бактерий до сих пор под сомнением.

  • В 2001 году учеными было дополнено уравнение Дрейка, с помощью которого определяется количество планет, пригодных для жизни. Оказалось, что жизнь теоретически может существовать на сотнях тысяч планет.

  • В 2002 году российские исследователи доказали, что микробы Deinococcus radiourans способны выжить при уровне радиации, более чем в 2000 раз превышающем смертельный для человека. Более того, через 50 поколений эти микробы адаптируются к пятидесятикратному увеличению излучения. Также было доказано, что при достаточном количестве времени микробы E.coli, которые не относятся к сверхвыносливым, тоже способны адаптироваться к высокому уровню излучения. Это косвенно подтверждает теорию о том, что на Марсе могли существовать живые организмы.

  • В 2002 году в атмосфере Венеры были обнаружены карбонилы – органические соединения, с большой вероятностью свидетельствующие о присутствии микробов или других живых организмов.

  • В 2003 году на поверхности Европы, спутника Юпитера, обнаружены соединения серы, которые могут быть следами жизнедеятельности бактерий, родственных тем бактериям, что обитают во льдах Антарктиды.

  • В 2003 году телескоп в Пуэрто-Рико уловил мощный сигнал из области, расположенной между созвездиями Рыб и Овна, где нет звезд с планетами, подходящими для жизни.

Поиск новых доказательств, существования внеземных цивилизаций по прежнему представляет огромный интерес для современной науки. В научной среде не стихают споры о реальности внеземных цивилизаций, но лишь дальнейшие наблюдения и эксперименты позволят выяснить, существуют ли где-нибудь обитаемые миры или мы одиноки, по крайней мере, в пределах нашей Галактики.


В рамках предложенного реферата можно сделать несколько выводов:

1. Поиск чужеродных форм вне Земли имеет большое значение для разработки фундаментальных проблем, связанных с выяснением происхождения и сущности жизни.

3. В настоящее время мы знаем только углеродистую форму жизни, и от нее мы должны исходить в суждениях о других возможных формах биологической организации.

4. Люди должны быть готовы к встрече с возможно неоднозначной, непредсказуемой, доселе невиданной другой жизнью, а значит и разумом.

5. Поиски жизни вне Земли являются лишь частью стоящего перед наукой более общего вопроса о возникновении жизни во Вселенной.


Таким образом, явных подтверждений тому, что существует жизнь во Вселенной (кроме жизни на Земле) нет, хотя и опровержений иному тоже не найдено.


На мой взгляд, внеземная жизнь, безусловно, существует. Среди такого бесконечного множества космических тел где-то обязательно должна присутствовать жизнь, хотя бы на ранних стадиях развития. Кроме того, с точки зрения теории Панспермии, так как жизнь на Землю была занесена из космоса, то логично предположить, что помимо Земли она была занесена и на другие планеты. Новейшие достижения, открытия и поиски предоставляют все больше доказательств наличия внеземной жизни.

Я думаю, что поиск жизни во Вселенной будет будоражить умы еще многих поколений людей, а кто знает, может быть и жителей других планет.


















Библиография.


  1. Левитан Е.П. «Астрономия», 11 класс, 1994 г.

  2. Голдсмит Д. «Поиски жизни во Вселенной»

  3. Ефремов Ю.Н. “В глубины вселенной”, 1984 г.

  4. http://ru.wikipedia.org/wiki

  5. http://www.astronomy.ru/

  6. http://stp.cosmos.ru/

  7. http://kosmo-mir.ru/

  8. http://compulenta.computerra.ru/




61




Получите в подарок сайт учителя

Предмет: Биология

Категория: Мероприятия

Целевая аудитория: 9 класс.
Урок соответствует ФГОС

Скачать
Реферат "Жизнь вне Земли"

Автор: Косач Надежда Вячеславовна

Дата: 17.10.2015

Номер свидетельства: 240694


Получите в подарок сайт учителя

Видеоуроки для учителей

Курсы для учителей

ПОЛУЧИТЕ СВИДЕТЕЛЬСТВО МГНОВЕННО

Добавить свою работу

* Свидетельство о публикации выдается БЕСПЛАТНО, СРАЗУ же после добавления Вами Вашей работы на сайт

Удобный поиск материалов для учителей

Ваш личный кабинет
Проверка свидетельства