Открытый урок в 10 классе Are you good at Math (Хорошо ли ты знаешь математику?)
Открытый урок в 10 классе Are you good at Math (Хорошо ли ты знаешь математику?)
Для того, чтобы расширить возможности школьников на английском языке и показать, как английский язык может быть использован для дальнейших академических и профессиональных целей, в учебниках М.З. Биболетовой для 10-11 классов, было создано приложение «School English». Задачи этого приложения в том, чтобы дать учащимся некоторую лексику, относящуюся к учебному предмету и показать, что общаться на темы решения уравнений или строения клетки не сложнее, чем разговаривать про кино, культуру различных народов или молодежные течения.
Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Просмотр содержимого документа
«Открытый урок в 10 классе Are you good at Math (Хорошо ли ты знаешь математику?) »
Пояснительная записка
Сегодня образование России переживает период перехода в новое качество: социально значимыми становятся способности к самостоятельному выбору, построению или освоению новых способов деятельности.
Новое содержание образования предполагает: организацию образовательного процесса на основе системно-деятельностного подхода, формирование социокультурной образовательной среды школы, обеспечение формирования универсальных учебных действий, введение интегрированных предметов (метапредметов), непрерывное обновление содержания при сохранении фундаментальных основ знаний, обеспечение индивидуализации процесса обучения.
Обучение иностранному языку сегодня рассматривается как одно из приоритетных направлений современного школьного образования. Специфика иностранного языка как учебного предмета в его интегративном характере, а также в его способности выступать и как цель, и как средство обучения для ознакомления с другой предметной областью (гуманитарной, естественно-научной, технологической).
В старшей школе предметные результаты освоения базовых курсов должны быть ориентированы на освоение обучающимися систематических знаний и способов действий, присущих данному учебному предмету, и решение задач освоения основ базовых наук, поддержки избранного обучающимися направления образования, обеспечения академической мобильности.
При анализе тематики общения старшеклассников выявилось, что наряду с общением на темы спорта, отдыха, путешествий, взаимоотношений в семье и с друзьями и так далее значительную часть времени занимает общение на профессиональные темы. Под профессиональными темами подразумеваются вопросы, относящиеся к основной деятельности школьников – учебе. Очевидно, что об учебе сложно говорить отвлеченно. У школьников возникает необходимость в профессиональной лексике, то есть в терминологии, относящейся к тому или иному учебному предмету, таким, как математика, физика, химия, биология и др.
Для того, чтобы расширить возможности школьников на английском языке и показать, как английский язык может быть использован для дальнейших академических и профессиональных целей, в учебниках М.З. Биболетовой для 10-11 классов, было создано приложение «School English». Задачи этого приложения в том, чтобы дать учащимся некоторую лексику, относящуюся к учебному предмету и показать, что общаться на темы решения уравнений или строения клетки не сложнее, чем разговаривать про кино, культуру различных народов или молодежные течения.
Мною выбран предмет "Математика" и разработаны уроки по теме "Решение системы линейных уравнений"(алгебра) и «Вычисление периметра»(геометрия). Поставленная цель уроков реализуется посредством использования дидактической системы деятельностного метода Л.Г. Петерсон. Тип урока - открытие новых знаний.
Технология деятельностного метода предполагает следующую структуру урока открытия нового знания:
1. Мотивация (самоопределение) к деятельности.
2. Актуализация знаний и фиксация затруднения в пробном учебном действии.
3. Выявление места и причины затруднения.
4. Построение проекта выхода из затруднения.
5. Реализация построенного проекта.
6. Первичное закрепление с проговариванием во внешней речи.
7. Самостоятельная работа с самопроверкой по эталону.
8. Включение в систему знаний и повторение.
9. Рефлексия деятельности (итог урока).
Так, структура урока введения нового знания имеет следующий вид:
1. Мотивация (самоопределение) к учебной деятельности.
Данный этап процесса обучения предполагает осознанный переход обучающегося из жизнедеятельности в пространство учебной деятельности.
С этой целью на данном этапе организуется мотивирование ученика к учебной деятельности на уроке, а именно:
1) создаются условия для возникновения у ученика внутренней потребности включения в учебную деятельность («хочу»).
2) актуализируются требования к ученику со стороны учебной деятельности и устанавливаются тематические рамки («надо», «могу»).
2.Целеполагание и построение проекта выхода из затруднения.
На данном этапе учащиеся определяют цель урока - устранение возникшего затруднения, предлагают и согласовывают тему урока, а затем строят проект будущих учебных действий, направленных на реализацию поставленной цели. Для этого в коммуникативной форме определяется, какие действия, в какой последовательности и с помощью чего надо осуществить.
3. Актуализация и пробное учебное действие.
На данном этапе организуется подготовка и мотивация учащихся к надлежащему самостоятельному выполнению пробного учебного действия, его осуществление и фиксация индивидуального затруднения. Соответственно, данный этап предполагает:
1) актуализацию изученных способов действий, достаточных для построения нового знания, и их обобщение;
2) тренировку соответствующих мыслительных операций;
4.Первичное закрепление с комментированием во внешней речи.
На данном этапе учащиеся в форме коммуникативного взаимодействия (фронтально, в группах, в парах) решают типовые задания на новый способ действий с проговариванием алгоритма решения вслух.
5.Самостоятельная работа с самопроверкой по эталону.
При проведении данного этапа используется индивидуальная форма работы: учащиеся самостоятельно выполняют задания нового типа и осуществляют их самопроверку, пошагово сравнивая с эталоном. В завершение организуется исполнительская рефлексия хода реализации построенного проекта учебных действий и контрольных процедур.
6. Включение в систему знаний и повторение.
На данном этапе выявляются границы применимости нового знания и выполняются задания, в которых новый способ действий предусматривается как промежуточный шаг.
Организуя этот этап, учитель подбирает задания, в которых тренируется использование изученного ранее материала, имеющего методическую ценность для введения в последующем новых способов действий. Таким образом, происходит, с одной стороны, автоматизация умственных действий по изученным нормам, а с другой - подготовка к введению в будущем новых норм.
7. Рефлексия учебной деятельности на уроке (итог урока).
На данном этапе организуется рефлексия и самооценка учениками собственной учебной деятельности на уроке. В завершение, соотносятся цель и результаты учебной деятельности, фиксируется степень их соответствия и намечаются дальнейшие цели деятельности.
Описанная структура урока систематизирует инновационный опыт российской школы, поэтому переход к ней – посильный для каждого учителя шаг, который дает достаточно быстрый результат – положительную динамику в уровне усвоения детьми знаний, развитии их мышления, речи, познавательного интереса.
Представляю вашему вниманию разработки уроков иностранного языка с применением ТДМ (Технология деятельностного метода)
Предмет Английский язык
Класс 10
Тема: Are you good at Math? (Хорошо ли ты знаешь математику?)
Тип урока ОНЗ
Наименование учебника, автор (ы) учебника: Enjoy English – 10, М.З.Биболетова, Е.Е. Бабушис, Н.Д. Снежко
Автор: Малинова Юлия Ивановна, учитель английского языка МБОУ СОШ №21 Г. Шарья
Основные цели:
Расширить возможности учащихся в общении на английском языке и показать, как английский язык может быть использован для дальнейших академических и профессиональных целей.
. Формирование умения решать систему линейных уравнений, комментируя решение на английском языке.
Материалы к занятию
Демонстрационный материал: 1) план урока; 2) мультимедийная презентация 3)учебник
Раздаточный материал: 1) самостоятельная работа№1; 2)эталон для самопроверки;
Ход урока
1 Мотивация к учебной деятельности
-Здравствуйте, ребята. У нас сегодня необычный урок. Это урок математики, но на английском языке. Скажите, пожалуйста, у кого из вас отличные оценки по математике? Вам нравиться изучать математику в школе? Это трудно или легко? Пригодится ли математика вам в вашей будущей профессии? Согласны ли вы с утверждением, что всем наукам требуется математика? Учащиеся отвечают на заданные вопросы.
- Можете ли вы утверждать, что сможете решить простейшие математические действия, используя английский язык? Например: 2+2=4. Правильно, можете. Эти знания сохранились у вас из курса начальной школы. А сможете ли вы решить, к примеру, систему линейных уравнений и прокомментировать решение по- английски? Что нам нужно узнать для того, чтобы сделать это?
- Good morning, students. As you know we have an unusual lesson today. It is Math lesson but in English. Tell me please, which of you are good at Math? Who has an excellent mark on Math? Do you like to study Math at school? Is it difficult? Will Mathematics be necessary for your future job? Do you agree with that all sciences require Mathematics?
-Can you prove that you can solve the simpliest mathematical expressions using English? For example 2+2=4. Yes, you can. You know it from primary school. But tell me please, whether you can solve a system of linear equations using English, for instance? No, you cannot. So what should we know to do this? Let's make a plan.
2. Актуализация знаний и фиксация затруднения в пробном действии.
Do you remember how to solve a system of linear equations?
{X + Y = 4
Y +XY =6
How do you discover new knowledge?
We will try to do the task, fix the problem, define the reason of it, create a new rule and a standard format.
-Nice of you. Good Luck!
Помните ли вы, как решать систему линейных уравнений?
Как вы поступаете дальше, когда понимаете, что столкнулись с затруднением?
Надо остановиться, подумать, где и почему возникла проблема, построить способ решения затруднения и действовать дальше. я предлагаю вам вариант плана нашей работы, посовещайтесь в своих группах, как сделать план эффективнее.
Предлагаются два плана работы на уроке, учащимся предлагается выбрать один: (пример)
1. Почему я здесь?
2. Введение новой лексики.(Актуализация изученных способов действий, достаточных для построения новых знаний.)
3. Самостоятельное выполнение пробного учебного действия.
4. Выявление места и причины затруднения.
5. Коррекция выявленных затруднений
6.Работа с самопроверкой по эталону.
7. Рефлексия деятельности на уроке.
А) Организация актуализации изученных способов действий, достаточных для построения новых знаний.
Вы знаете знаки + (плюс) и - (минус) и можете решать несложные примеры. Но знаете ли вы, как в английском языке называются основные математические операции: сложение, вычитание, умножение, деление? Сопоставьте эти операции со знаками, которые их выражают.
addition -
subtraction :
multiplication +
division x
You know this signs + (plus) and – (minus), you can solve the simpliest mathematical expressions. But do you know the basic mathematical operations like сложение, вычитание, умножение, деление? Now match them and the signs to express them
В) Фиксация актуализированных способов действий в речи и в знаках (эталоны)
addition
+
subtraction
-
multiplication
x
division
:
Учащиеся проверяют себя. Затем следует фонетическая отработка введенной лексики.
А сейчас вам нужно будет прочитать выражения и выбрать одно, которое описывает болеe общее действие. (And now you should read the expressions and tick the most general one)
To multiply something by something
To divide something by something
To subtract something from something
To add something to something
To calculate something
Эталон
To multiply something by something
To divide something by something
To subtract something from something
To add something to something
+
To calculate something
С) Организация обобщения актуализированных способов действий
Закрепление введенной лексики в речи.
А сейчас решите примеры, используя новые слова. (And now let's do the sums using new words)
45 + 50 = 95
3 x 9 = 27
64 – 6 = 58
36 : 6 = 6
Эталон
45 + 50 = 95 fourty five plus fifty is ninety
3 x 9 = 27 three multiplied by nine gives twenty seven
64 – 6 = 58 six subtracted from sixty four makes fifty eight
36 : 6 = 6 thirty six divided by six gives six
Д) Организация актуализации мыслительных операций, достаточных для построения новых знаний
Следующее задание - найти математические выражения, описанные в левой колонке
1.twelve divided by four gives three
a) 120 : 20 = 6
2 twenty multiplied by six is one hundred and twenty
b) 20 x 6 = 120
3 one hundred and twenty divided by twenty gives six
c) 12 : 4 = 3
4 four subtracted from twelve makes eight
d) 2 = 4
5 if we square two, we'll get four
e) 3І = 9
6 if we square three, we'll get nine
f) 12 – 4 = 8
Эталон
1.twelve divided by four gives three
12 : 4 = 3
2 twenty multiplied by six is one hundred and twenty
20 x 6 = 120
3 one hundred and twenty divided by twenty gives six
120 : 20 = 6
4 four subtracted from twelve makes eight
12 – 4 = 8
5 if we square two, we'll get four
2І = 4
6 if we square three, we'll get nine
3І = 9
Е) Мотивация к пробному учебному действию и организация самостоятельного выполнения пробного учебного действия
- Молодцы, вы хорошо справились с заданием (Well done)
1)Warming up. Say is it true or false. (небольшая разминка - верно-неверно)
1. If number ends in five or zero, its always divisible by five. ( если число оканчивается на ноль или пять, оно делится на пять) ВЕРНО
2. If a number ends in three or nine, its divisible by three. ( если число оканчивается на три или девять, оно делится на три) НЕВЕРНО
3. The cube root of nine is three. (кубический корень из 9 равен 3) НЕВЕРНО
4. The value of a square root can be positive and negative. (значение квадратного корня может быть отрицательным и положительным) ВЕРНО
5. The value of a fraction does not change if we divide both the top and the bottom by 1 and the same number. ( значение дроби не изменится, если мы разделим оба числитель и знаменатель на 1 и на то же число) ВЕРНО
А сейчас давайте применим полученные знания на практике. Вы будете работать в группах. Вам следует записать следующие числительные и математические выражения цифрами, проверить вычисления и исправить ошибки, если они есть. (And now let's practice. Work in groups of four. You should write down the following in numbers and mathematical signs. Check up the calculations and correct the mistakes if any.)
1 If we divided thirty six by four, we get nine. When we then multiply the result by three point four, it gives us thirty point six. (если, мы разделим 36 на 4 мы получим 9.Затем, умножаем результат на 3,4 и получаем 30,6)
2. When we subtract fourty - four point three from thirty nine, we get a negative value of five point three. If we add seven, the result is positive again and it makes one point seven.( когда мы вычтем 44,3 из 39, то получим минус 5, 3. Если мы прибавим 7 , то результат будет положительным и составит 1,7.
Four multiplied by eighty five gives us three hundred and forty. If we subtract forty. we get three hundred sharp. (4, умноженное на 85 дает 340. Если мы отнимем 40, то получим ровно 300)
Two hundred and ninety added to five hundred eighty gives us eight hundred and sixty. Then we multiply it by three and get two thousand five hundred and eighty. (290 плюс 580 дает нам 860. Затем мы умножаем эту сумму на 3 и получаем 2580). В данном выражении - ошибка, следует записать - (290+580) x 3 = 2610
And now try to lable the mathematical things below with the words from the box. (а сейчас запишите выражения, записанные в рамочках со словами, данными ниже, они помогут нам решить систему линейных уравнений)
fraction – (дробь )
square root – (квадратный корень )
linear equation – (линейное уравнение )
cube root – (кубический корень )
system of linear equations – (система линейных уравнений)
quadratic equation – (квадратное уравнение)
3.Выявление места и причины затруднения.
Учащиеся работают с упражнением в учебнике №9 стр 161
4. Обобщение затруднений во внешней речи.
Назовите действия, в которых были допущены ошибки.
В чем была ваша ошибка?
Сформулируйте действия, в которых вы допустили ошибки.
5. Включение в систему знаний и повторение
Учащиеся работают с упражнением в учебнике №11стр 162
4. Рефлексия деятельности на уроке.
Какую работу вы сегодня проводили?
Какие знания вам были необходимы?
С какими трудностями столкнулись в работе?
Что помогло выйти из затруднения?
В начале урока каждый из вас поставил перед собой цель. Определите уровень достижения цели.
Домашнее задание : Из учебника алгебры решить любое уравнение, используя алгоритм решения на английском языке