Просмотр содержимого документа
«Как появилась алгебра и геометрия»
КАК ПОЯВИЛАСЬ АЛГЕБРА И ГЕОМЕТРИЯ
Выполнила :Салахова Гунел
Ученица 7 Б класса
Суть алгебры
Алгебра, вместе с арифметикой, есть наука о числах и через посредство чисел – о величинах вообще. Не занимаясь изучением свойств каких-нибудь определенных, конкретных величин, обе эти науки исследуют свойства отвлеченных величин, как таковых, независимо от того, к каким конкретным приложениям они способны. Различие между арифметикой и алгеброй состоит в том, что первая наука исследует свойства данных, определенных величин, между тем как алгебра занимается изучением общих величин, значение которых может быть произвольное, а, следовательно, алгебра изучает только те свойства величин, которые общи всем величинам, независимо от их значений. Таким образом, алгебра есть обобщенная арифметика. Это подало повод Ньютону назвать свой трактат об алгебре "Общая арифметика". Гамильтон, полагая, что подобно тому, как геометрия изучает свойства пространства, алгебра изучает свойства времени, назвал алгебру "Наукою чистого времени" – название, которое Морган предлагал изменить на "Исчисление последовательности". Однако такие определения не выражают ни существенных свойств алгебры, ни исторического ее развития. Алгебру можно определить как "науку о количественных соотношениях".
ГЕОМЕТРИЯ
раздел математики, изучающий пространственные структуры и отношения, а также их обобщения.
Геометрия как систематическая наука появилась в Древней Греции, её аксиоматические построения описаны в «Началах» Евклида. Евклидова геометрия занималась изучением простейших фигур на плоскости и в пространстве, вычислением их площади и объёма. Предложенный Декартом в 1637 году координатный метод лёг в основу аналитической и дифференциальной геометрии, а задачи, связанные с черчением, привели к созданию начертательной и проективной геометрии. При этом все построения оставались в рамках аксиоматического подхода Евклида. Коренные изменения связаны с работами Лобачевского в 1829 году, который отказался от аксиомы параллельности и создал новую неевклидову геометрию, определив таким образом путь дальнейшего развития науки и создания новых теорий.
История алгебры
Арифметика изучается с самых древних сохранившихся текстов, относимых к математике. В нынешних справочниках признается, что на развитие алгебры оказал влияние труд древнегреческого математика Диофанта Александрийского «Арифметика» (3 век с рождества Христова).
В труде арабского математика Мухаммеда аль-Хорезми под названием «Альджебр аль-мукабала» (9 век нашей эры), рассмотрены методы решения задач, сводящихся в современной терминологии к алгебраическим уравнениям первой и второй степеней. От названия этой работы и произошел термин «алгебра».
В 15-17 веках в работах европейских математиков появились применяемые в настоящее время обозначения алгебраических операций («+», «-»), скобки, знаки радикалов, обозначение степеней числа. Франсуа Виет в конце 16 века ввел буквенные обозначения для переменных.
В 17-18 веках под алгеброй понимается наука о вычислениях с использованием переменных, записанных с помощью букв, в частности решение алгебраических уравнений. В настоящее время в школьном образовании подобные буквенные вычисления называются элементарной алгеброй.
с помощью элементарных арифметических операций и операции извлечения корней становится центральной задачей алгебры.
Итальянскими математиками в 15 веке были найдены формулы для решения общего уравнения 3-й и 4-й степени, однако для более высоких степеней задача до 19 века не поддавалась решению.
В 1824 году норвежский математик Нильс Абель доказал, что уравнения выше 4-й степени в общем случае в радикалах не разрешимы. В 1830 году французский математик Эварист Галуа в рамках созданной им теории Галуа вывел общий критерий разрешимости алгебраического уравнения в радикалах.
С середины 19 века в центре алгебраических исследований оказывается изучение произвольных алгебраических операций. Так расширялось понятия числа, появилось понятие алгебра логики, были исследованы кватернионы, создано матричное исчисление, получила развитие теория групп.
Алгебра как общая теория произвольных алгебраических операций стала восприниматься с начала 20 века с появлением работ Давида Гильберта, Э. Штейница, Э. Артина, Эмми Нётер. Это понимание было закреплено в вышедшей в 1930 году монографии Б. Л. ван дер Вардена «Современная алгебра», остающейся до настоящего времени востребованным учебником по алгебре.